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Heart rate is one of the most important vital signals for personal
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ultimately the accuracy of heart rate estimation. Special hardware
used in these approaches limits their applicability and truly device-
less and ubiquitous heart rate monitoring is yet to be achieved. 1 INTRODUCTION

In this paper, we propose CardioFi: a system that can accu-
rately monitor vital signs through COTS WiFi hardware with omni-
directional antennas. Our key challenge is the substantial radio
frequency noise that affects WiFi transmissions in real-world envi-
ronments. However, we observe that a few sub-carriers are typically
less affected by multipath and the heart beating motion can be ac-
curately detected in their frequency spectrum. We present a novel
sub-carrier selection scheme that allows us to detect and amplify
signal from these sub-carriers even in low signal-to-noise ratio sce-
narios. We show that CardioFi estimates heart rate with 1.1 beats
per minute (bpm) median error, which compares favorably with
systems equipped with directional antennas. Furthermore, we show
that state-of-art heart rate estimation algorithms do not perform
well in low SNR scenarios and CardioFi improves their 50- and
90-th percentile error by 40% and 176%, respectively.

Ubiquitous health monitoring had witnessed a surge of interest in
the past few years. Current heart rate monitoring solutions mostly
employ wearable devices attached to the user’s body. The alter-
native device-free heart rate monitoring offers improvements in
comfort, ease of use, and does not require close cooperation of
the subject, which are important aspects especially in the health
care context. Commodity WiFi devices have recently been used
for contact-free monitoring of vital signs, such as heartbeat and
respiration [14, 28].

While demonstrating promising performance for respiration
monitoring, commodity WiFi technology requires directional an-
tennas to achieve accurate heart rate monitoring. The key obser-
vation is that directional antennas help to substantially reduce
multipath effects in complex real-world environments that render
signals obtained with omnidirectional antennas difficult to analyze.
In addition to respiration and heartbeat monitoring, directional
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contain strong heartbeat frequency related frequency components
and are sufficient for making accurate heartbeat estimation.

Based on our observation, we implement filtering and sub-carrier
selection algorithms that rank the sub-carriers according to their
heartbeat information content. Related work has primarily adopted
the variance-based selection method that discards sub-carriers with
low variance [14, 27, 28] or ranked sub-carriers according to their
periodicity [16]. While these approaches tend to work well when
the motion level is sufficiently strong to modulate the amplitude of
the received signal (such as breathing, walking), they fail when the
motion is weak and easily dominated by other environmental RF
noise. Through experiments, we show that existing methods yield
noisy frequency curves and significant energy peaks at frequencies
distributed across the whole heartbeat frequency spectrum. Our
sub-carrier selection method takes advantage of the spectral history
and chooses those sub-carriers with consistent dominant frequency
component over a specified time window.

We make the following contributions in this paper:

o We demonstrate the feasibility of contact-less extraction of
heart rate from Channel State Information (CSI) of COTS WiFi
devices without extra hardware such as directional anten-
nas. This is to the best of our knowledge, the first system
that does not rely on bulky directional antennas. The pro-
posed approach estimates the heart rates with median error
comparable to directional antennas for user-to-apparatus
distances of up to 2 meters and shows an improvement of
40% compared to previous work [14].

e We propose a novel sub-carrier ranking scheme based on Spec-
tral Stability, which is capable of selecting informative sub-
carriers in situations where the majority of the sub-carriers
are noisy. The scheme leverages the known frequency range
of the heart beating and is computationally efficient, which
makes it suitable for instantaneous heart rate estimation.
The proposed scheme reduces the median error by 19% com-
pared to previous sub-carrier selection approaches based on
variance.

The rest of this paper is organized as follows. We start by moti-
vating the problem of WiFi-based contact-free heart rate estimation
in the absence of bulky directional antennas in Section 2, where
we also highlight the challenges and our observations for making
the heart rate estimation possible. Next in Section 3, we show the
proposed CardioFi system architecture. Then, in Section 4, we eval-
uate the system’s performance and study the impact of different
parameters, which is followed by the overview of related works in
Section 5. Finally, we conclude the paper in Section 6.

2 MOTIVATION

The state of a wireless channel is affected by the movement of peo-
ple and objects in the transmission medium. For WiFi devices, these
movements induce changes in the CSI of different sub-carriers. The
key idea behind WiFi sensing is to use the CSI to infer the move-
ments that have caused the changes in CSI. By using this inference,
researchers have been able to successfully perform location track-
ing [32], gesture recognition [23], breathing rate estimation [29, 34],
gait [33] and many other applications.
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Figure 1: PSD curves for CSI data collected using: (a) direc-
tional ([14]) and (b) omni-directional antennas. The low SNR
in (b) makes the heart rate estimation a challenge.

Our aim is to use COTS WiFi devices to estimate the heart rates.
Although the estimation of breathing rate from CSI data has already
been demonstrated [29, 34], it is challenging to estimate the heart
rate from CSI data because the heart movement is significantly
smaller in magnitude compared to that of the lungs. The chest
movement due to breathing is approximately 4-12 mm [7] and
causes a periodic variation in the CSI time series which is easily
discernible by naked eyes. However, the chest movement due to
the heart is an order of magnitude smaller, at approximately 0.2-0.5
mm [21], and can only induce a small change in CSL

The mixing of the movement due to breathing and the heart
can cause another problem. Since breathing movement is lower
in frequency than that of the heart, the higher harmonics due to
breathing can interfere with the signal due to the heart [20, 28].

In order to overcome these challenges, Liu et. al. employed fre-
quency analysis to isolate the heart rate frequency band from that
of breathing, and used directional antenna to boost the signal’s
quality [14]. Fig. 1(a) (presented as Fig.8(b) in [14]) shows the re-
sults. The thin magenta lines in the figure show the Power Spectral
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Figure 2: Actual heart rate compared to the estimation produced from individual sub-carriers. At each point in time, different
sub-carriers produce estimation that varies largely (illustrated by the red shaded areas whose boundary represent maximum
and minimum estimation at that point). Even after discarding extreme estimates (darker area), the range continues to be large.

Density (PSD) of the amplitude of the CSI time series from different
sub-carriers after filtering out the frequency range in which the
heart rates are unlikely to be found. The thick blue line shows the
mean PSD of all the sub-carriers, which shows a distinct peak at a
frequency very close to the actual heart rate indicated by the black
dashed lines.

Fig. 1(b) demonstrates the challenges of applying the method
in [14] to the CSI values of all 30 sub-carriers obtained from conven-
tional WiFi devices that use on-board omnidirectional antenna.
Here, we used a pair of laptops separated by a distance of 1 m.
A user was sitting at approximately 0.5 m from the laptops. We
directly applied the same method as in [14] to process the data. The
thin magenta lines in Fig. 1(b) show the PSD of the sub-carriers
and they were significantly noisier than those in Fig. 1(a). The thick
blue line shows the mean PSD. The heart rate is then estimated
from the peak PSD as in [14] to be 68 bpm, which is significantly
different to the ground truth value of 77 bpm. On the other hand,
the proposed CardioFi, which will be introduced and discussed in
later sections, produced an estimation of 76 bpm (the red line in
the figure) that is very closed to the ground truth.

Although the CSI data in Fig. 1(b) is noisy, we can see that the
signals contain useful information as the PSD of a number of sub-
carriers has a peak close to the actual heart rate. The top circular
ticks in Fig. 1(b) depict the positions of sub-carriers’ PSD peaks.
The opacity of the tick shows the number of sub-carriers with the
peak at that position. Anecdotally, six sub-carriers out of thirty
differ from the actual heart rate by 0.9 bpm only.

We show another example in Fig. 2, where we track the PSD for
each sub-carrier over time. We calculate the peak of the PSD curve
for each sub-carrier and use the peaks as heart rate estimates. The
lightly shaded area shows the heart rate estimate bounds defined by
the minimum and maximum PSD peaks among all sub-carriers. Sim-
ilarly, the dark shaded area gives a heart rate estimate as bounded
by 10% and 90% percentile of individual sub-carrier estimates. Al-
though the range is fairly wide, note the range still includes the
actual heart rate shown by the black line which was measured with
an external heart rate monitor. We conclude that despite the sig-
nificant increase in RF noise due to omnidirectional antennas, CSI
data contains useful heart rate information. In the next section, we
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will present a suite of algorithms that CardioFi uses to filter out the
noise and substantially improve accuracy of heart rate estimation
from CSI data collected with omnidirectional antennas.
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Figure 3: The architecture of CardioFi.

3 CARDIOFI

Fig. 3 shows the architecture of CardioFi, which consists of two
WiFi devices. One device acts as the transmitter and the other as
the receiver; the receiver is assumed to have multiple antennas,
which is common for the WiFi devices nowadays. Fig. 3 depicts
the transmitter and the receiver as an access point and a laptop
respectively. The transmitter sends packets to the receiver at a
regular interval. If a subject is in the vicinity of the devices then this
subject’s heart beats, as well as other movements, will modulate the
wireless signals arriving at the receiver. Therefore, the CSI contains
the information of the heart rate of the subject.
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The receiver continuously records the CSI of the received pack-
ets in different sub-carriers. The CSI data is used to compute the
phase difference (PD) between the antenna pairs. In the first stage,
CardioFi preprocesses the PD data using outliers removal and noise
filtering algorithms. The second stage constitutes a key technical
contribution of this paper, where we use novel algorithms to score
and select sub-carriers that are the most informative to heart rate.
In the last stage, data fusion is used to fuse information from the
top scored sub-carriers to produce the final heart rate estimate.

3.1 Background

The physical layer of the latest WiFi standard is based on the Or-
thogonal Frequency Division Multiplexing (OFDM) modulation
technique. OFDM uses a number of orthogonal sub-carriers and
transmits data independently on each of the sub-carriers. Assuming
there are m transmit antennas and n receive antennas, the CSI of
all data streams can be expressed as:

Hi 1 Hi» Hin
Hz1  Hzp Hon

. : (1)
Hm,l Hm,Z Hm,n

where H; ; is the CSI vector between the i-th transmit antenna and
the j-th receive antenna. Commodity WiFi cards make the CSI of
some of the sub-carriers available, e.g. Intel 5300 WiFi cards can
export the CSI of 30 sub-carriers. Let C denote the number of sub-
carriers whose CSI is available, then each H; ; is a vector with C
elements. We use H to denote a generic H; j and we write:

H=[h1,h2"",hc] (2)

where h; denotes the CSI for sub-carrier i in the CSI vector H. The
CSI h; is a complex number which combines the effect of attenua-
tion, reflection and scattering of the radio sub-carriers when they
propagate from the transmitter antenna to the receiver antenna.
The CSI can be expressed in terms of the multi-path attributes.
Assuming that the radio propagation in h; (whose frequency is
fi) is the combined effect of P multi-paths where the attenuation
and propagation delay on the k-th path (where k = 1,...,P) are
denoted by respectively, pr. and 7, then we can write:

P
hi = ) pe /i
In our context, some of the multi-paths may be modulated by the
movement of the heart of a subject, see Fig. 3, and these multi-paths
provide information on the heart rate of the subject.

Instead of using CSI h;, one may also use the magnitude and the
phase of h; to infer the information on the heart rate. However,
a challenge of using the phase of h; obtained from COTS WiFi
devices is that there is an unknown random offset in the phase
measurements which varies from packet to packet. Fortunately,
this unknown offset is the same for multiple receiving antennas
for a given packet [29]. This is because the antennas are on the
same Network Interface Card (NIC) and hence they use the same
system clock and the same down-converter frequency. Therefore,
it is possible to remove this unknown offset by subtracting the
phase measurements from two receiving antennas. Hence, CardioFi

®)
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uses the phase difference (PD) as the raw data for the heart rate
estimation.

3.2 Preprocessing

The preprocessing stage consists of three sub-steps: outlier removal,
de-trending and de-nosing, see Fig. 3. The input to the preprocessing
block is the PD of all sub-carriers and the preprocessing is done for
each individual sub-carrier independently.

The removal of outliers is performed by a Hampel filter. We
begin by computing the median p and the mean absolute deviation
o over a time window (T7) of the PD data. By using a threshold 71,
we discard the data that lie outside the interval [p—71 X0, g+ 11 X 7.
CardioFi chooses T; to be 0.5 seconds and 77 to be 0.4. Then, linear
interpolation is performed to maintain uniform sampling (due to
interference caused by other devices in the same WiFi channel,
packets received may not be evenly distributed in time).

The next step is to remove the trend in the data. This step is
important because we observed during our experimentation that
sub-carriers could go through unpredictable abrupt changes, see
Fig. 4(a). These changes could occur when the user made sudden
movements and they appeared in all sub-carriers.

Since the abrupt changes in PD can last for a short time or a long
period of time, see Fig. 4(a), we propose a de-trending method called
Dynamic Window (DW). The basic idea of DW is to divide the PD
time series into non-overlapping windows and if de-trending has
been correctly performed, we expect the variance in each window
to be almost the same. This means that if the trend changes slowly,
then we can use a larger window size; and vice versa. The purpose
of the DW algorithm is to determine this window size adaptively.

The DW algorithm begins by computing the average variance
over ¢ windows where the default window size is used. Let v,
denotes the variance of the w-th window. The DW algorithm com-
putes

C

E‘u:%sz

w=1

4)

The next step is to determine the size of the next window so that
the variance of the data in the next window is almost the same
as E,,. We do this by increasing the size of the next window until
either the variance of the data in the window exceeds aE,, where
«a is a parameter or the window size reaches a preset limit of /. In
our experiments, we chose ¢ = 5, ] = 3 seconds and @ = 1.2. Green
dashed vertical lines in Fig. 4b(b) depict the dynamic windows.

The advantage of DW algorithm is that it can capture abrupt
changes in the signal accurately. We compare the accuracy of the
DW algorithm against the Moving Average (MA) method with a
fixed window size, see Fig. 4(b)(c). DW-based de-trending clearly
performs better than the MA method.

After de-trending, another Hampel filter is used to remove the
noise. Fig. 4(d) shows the de-noised data (window size, or T3, is 0.5
second and 73 set to 0.1).

3.3 Sub-carrier Selection

As discussed in Section 2, some sub-carriers are more informative
to heart rate estimation. Here we present a method to assess the
quality of estimation of each sub-carrier.
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Figure 4: CardioFi preprocessing

The sub-carrier selection step consists of two sub-steps, see Fig. 3.
The first step is to use a bandpass filter to remove the frequency
components in which the heart rate is unlikely to be found. Follow-
ing [20], we retain the frequency in the interval [max(2 = BR, 50), 2]
Hz, where BR is the estimated breathing rate, to avoid the frequency
harmonics caused by breathing. The breathing rate is estimated as
the frequency component with strongest power in the breathing
range. Note that the breathing rates generally range from 0.2-0.5Hz.

The next step is to determine the quality of the sub-carriers.
Earlier methods [14, 27] made use of the fact that different sub-
carriers have different wavelengths and this difference can result
in different sensitivity levels for the motion of interest. Hence,
the mean absolute deviation of sub-carriers’ signals is used as a
quality metric. Generally the larger the deviation is, the higher the
sensitivity is.

In this paper, we propose a novel Spectral Stability method
to determine the quality of the sub-carriers. Our method is based
on an observation that the true heart rates do not change rapidly
over a short time duration. Therefore, we calculate the heart rate
estimate multiple times over a short duration. If the estimates are
consistent, then the signal is likely to be of good quality.

In order to calculate the spectral stability score at time ¢, we
consider a time interval of length T3 and divide the interval [t — T3 :

101

t] into N sliding windows. Each window is wfl seconds long and
overlapped by wy — 1 seconds with the following window. For
sub-carrier i and time window n (for n = 1...N), we determine
the peak frequency of the PD time-series as r; . The value of r;
can be considered as one of the heart rate estimates. We define the
Spectral Stability score ps; of sub-carrier i as:

psi = ! &)

variance(ri 1, ..., TiN)

We now demonstrate that the spectral stability score is indeed
a good indicator of the quality of the heart rate estimation. We
conducted an experiment where we used the individual sub-carriers
to estimate the heart rates and the true heart rates are also collected.
Fig.5(a) shows the error of the estimated heart rates. It can be seen
that there is a lot of variation in the estimation error but some
carriers produced low estimation error. Fig.5(b) shows the variance
of the estimated heart rates, i.e. the denominator of Eq. (5). Fig.5(c)
plots the variance of the estimated heart rates against the error
in the estimated heart rates. The figure shows that there is a high
correlation between the two quantities, which demonstrates that
we can use the spectral stability score to assess the quality of the
sub-carriers for the heart rate estimation.

The impact of the values of N and wy will be investigated in Section 4.2.2
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Fig. 6 further illustrates the effectiveness of the proposed sub-
carrier selection scheme. Fig. 6(a) shows the heart rates estimated
by using the sub-carrier with the highest spectral stability score. It
can be seen that the estimated heart rates (blue curve) follow the
actual heart rates (black curve) closely, with a median error of 2.4
bpm only. On the other hand, if we use the sub-carriers that have
the largest variance, then the heart rate estimation (green curve) is
poor as shown in Fig. 6(b) with a median error of 5.2 bpm which is
more than double of that in Fig. 6(a).

3.4 Heart Rate Estimation

After computing the spectral stability score for the sub-carriers,
the next step is to use the scores to select the good sub-carriers.
We first normalise the spectral stability scores before excluding the
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Figure 6: Heart rate estimation from highest scoring sub-
carrier selected using Spectral-based (a) and Variance-based
(b) selection methods.

sub-carriers whose scores are less than 20% of the score of the best
sub-carrier. We fuse the data from the most informative sub-carriers
by calculating the mean PSD spectrum across the sub-carriers. The
final instantaneous heart rate is then estimated as the frequency
component with the largest magnitude in the mean PSD spectrum.

The output of the whole processing pipeline for a 200-second
segment is shown in Fig. 7(a). The figure shows estimated heart
rate from CardioFi and also from [14]. It can be seen that CardioFi
tracks the true heart rates very closely. Fig. 7(b) shows the box plot
of the estimation errors from CardioFi and [14] respectively. The
median error for CardioFi is 1.0 bpm, while that of [14] is 1.9 bpm,
which is 90% larger.

Fig. 7(c) and (d) illustrate the performance gap between CardioFi
and [14]. They show the estimated spectra of the two methods at
time 150 seconds of Fig. 7(a). The behaviour of Fig. 7(c) is similar to
that in Fig.1(b) introduced earlier where the estimated spectra are
very noisy. However, CardioFi obtained a better spectrum estima-
tion by judiciously choosing the informative sub-carriers using the
spectral stability score. Note also that in Fig. 7(d), only 5 sub-carriers
were selected.

4 EVALUATION

We evaluated CardioFi in office room and bedroom environments.
Fig. 8 illustrates the environments we considered for our experi-
ments, the placements of devices, and the location of a subject.
The first setup (Fig. 8(a)) represents the setup of the contact-
free heart rate monitoring for a quasi-static subject (watching TV,
reading, etc.). The subject’s body does not intersect the line of sight
(LoS) between the sender and the receiver. Typical applications
include long-term vital sign monitoring for medical applications
and instantaneous heart rate monitoring after exercise as post-
exercise recovery rates were shown to be a strong predictor of
mortality [6]. Another example is a subject observing the slowing
down of her heart rates in real-time while practicing meditation
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Figure 7: The performence of CardioFi vs that of Liu et. al. [14]

[1]. The second (Fig. 8(b)) setup is a representative environment
for the vital sign monitoring during sleep.

The WiFi transmitter and receiver are two HP Elitebook 6930p
laptops equipped with Intel 5300 WiFi card and both devices use
internal antennas. CSI data was collected using Linux 802.11n CSI
Tool [9] in the 5 GHz band. Four volunteers participated in the data
collection process over a total period of 2 months?. The ground
truth for heart rates was collected at 1 Hz by the Polar H7 sensor
[2], which was wrapped around the subject’s chest and reported the
instantaneous heart rates over bluetooth. Network time protocol
was used to synchronize the CSI and Polar H7 data streams. We
varied the distances between a user and the LoS of devices for

different Tx/Rx placement scenarios. Except for the results in Fig.

9(b), the distances were less than 2 m.

4.1 Overall Performance

We begin by evaluating the heart rate estimation of our proposed
approach (Fig. 9(a)) and investigate how the performance changes
with increasing distance of the user from the WiFi devices.
Compared to the baseline method in [14], CardioFi decreases the
median error from 1.9 bpm to 1.14 bpm, a 40% reduction. Moreover,
90% of the errors are below 5.1 bpm which improves the baseline

?Data collection was approved by the Human Research Ethics committee in University
of New South Wales, Sydney, Australia.
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algorithm by 176%. In general, the proposed approach has a median
error comparable to device-less systems implemented with direc-
tional antennas [14, 28] and device-based accelerometer systems
[11]. This is achieved without requiring hardware modifications or
direct contact with subject’s body.

We next test the impact of increasing the distance between the
subject and any of the communicating devices and plot our results
in (Fig. 9(b)). As the distance increases, the reflected signal becomes
weaker and hence the accuracy degrades gradually until reaching
the median error of 1.6 bpm at distance of 2 meters. We find the
signal becomes very noisy when the distance goes beyond 2 meters,
resulting in a substantial increase of the error. Upon closer inspec-
tion of the signal, the majority of the sub-carriers fail to produce
accurate estimation of the heart rate, which ultimately leads to
large errors in the data fusion stage. We consider only distances up
to two meters in the experiments for the rest of this paper.

4.2 Impact of Parameters

4.2.1 Impact of Sub-carrier selection. In this section we study the
effect of the sub-carrier selection step on the produced estimation
results.

Fig. 10(a) shows the error as we change the number of sub-
carriers considered for each criterion. We compare our proposed
Spectral Stability score to the variance-based sub-carrier selection
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schemes in which the sub-carrier score is calculated based on vari-
ance of signal itself. The spectral stability method outperforms the
variance based method for the top ranked sub-carrier, with 2.8 bpm
and 3.14 bpm median error, respectively. The estimation improves
as we include more sub-carriers until reaching 10 sub-carriers and
the median error of 1.14 bpm and 1.8 bpm for spectral and variance
methods, respectively. On average, the spectral stability method
decreases the median error of the variance method by 19%.

Second important parameter used in the sub-carrier selection
step is the window length N for assessing the spectral stability.
Fig. 10(b) illustrates that the median error is insensitive to N > 20
(median error 1.1 bpm). Smaller N values produce poor spectral sta-
bility score (median error 1.4 bpm) as all sub-carriers tend to score
close to zero, making it difficult to identify reliable sub-carriers. We
set the value of N to be 40 seconds.

4.2.2  Sliding Window Length wy. The window length used for
calculating the FFT balances the need of obtaining accurate results
and the initial delay in the system response. Ideally, larger win-
dow size is preferred to obtain more accurate results. However,
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Figure 9: The performance of CardioFi.

this comes at the cost of increased computational processing and
delayed reporting due to the initial delay. Fig. 10(c) shows that
segments as small as 10 seconds are sufficient for obtaining the
heart rate with median error of 1.9 bpm. We set the value of wy to
20 seconds.

4.2.3  Impact of Sampling Rates. Fig. 10(d) shows the median
error for different sampling rates. Error ranges (5th-90th percentile)
are depicted as the vertical lines. While sampling at 20 samples per
second should be theoretically sufficient for capturing the heart
rate, we find this rate unreliable in practice. The results show that
higher sampling rates reduce median errors. However, this effect di-
minishes above 100 samples per second. Hence, we set the sampling
rate to 100 samples per second in our evaluation.

5 RELATED WORKS

CardioFi is related to a large body of literature concerned with vital
sign monitoring. In this section we survey categories of closely
related vital sign monitoring research.

As an important indicator for human health condition and stress
levels, heart rate is traditionally acquired through medical ded-
icated equipments such as electrocardiography (ECG) or pulse
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oximeters. Although accurate, the inconvenience of wearing them
motivated researchers to investigate alternative monitoring tech-
niques, especially for applications that require daily monitoring.
The techniques can be generally broken down into two categories:
wearable devices and device-free monitoring.

Wearable device monitoring: A large body of previous re-
search assumes that sensors are attached to the user to capture the
heart beating rates. Examples include wearable accelerometers that
detect tiny heart beating motion [8, 22].To introduce a ubiquitous
alternative, smartphones’ built-in sensors were employed by a num-
ber of systems for vital sign monitoring[3, 11, 13, 19]. LivePulse
[10] detects changes in transparency of users’ fingertips by the
built-in camera of a mobile device to infer the heart rates. Heart-
Sense [18] fuses inertial sensors measurements of phone strapped
on a subject’s chest to obtain her heart rates. These approaches
require contact with the subject’s body, rendering them uncom-
fortable on the long term.

Device free systems: can monitor vital signals of a user without
requiring her to wear a sensor. Recently, there has been a number
of relevant interesting research efforts. They can be categorized
into three groups.
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1) Vision contact-less sensing: These techniques, in general,
either track changes in color intensity [25, 30], or the tiny body
vibration caused by heartbeat [5, 24]. In addition to privacy con-
cerns, illumination conditions affect the performance of these
systems.

2) Acoustic contact-less sensing: Unlike WiFi, separating acous-
tic signal reflections based on arrival times, which translates to dis-
tances range, is feasible due to the significantly lower speed of the
sound compared to that of radio. Furthermore, since most systems
employ co-located speaker and microphone and use the same fre-
quency, there is no carrier frequency offset (CFO) errors between the
sender and the receiver. These advantages were leveraged by many
efforts that used smartphones built-in microphone and speaker
to convert the phone into active sonar capable of monitoring vi-
tal signs. Acousticcardiogram [20] demonstrated the feasibility of
obtaining breathing and heart rates. The limited operational dis-
tance (within a few centimeters) is the main obstacle for the
wide adoption of acoustic approaches.

3) Radio contact-less sensing: Radio based sensing systems be-
long to the most popular device-free systems. [4] uses T-shaped spe-
cial antennas and ultra-wideband FMCW radar to monitor breathing
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and heart rate of smart homes occupants. EQ-Radio [35] extends
[4] to acquiring Heart Rate Variability (HRV) and uses it for emo-
tion recognition. mmVital [31] uses the Received Signal Strength of
the highly directional 60 GHz millimeter radio signal for breathing
and heart rates monitoring. Liu et. al. [15] leveraged the ampli-
tude information of CSI to monitor breathing and heart rates
during sleep. PhaseBeat [28] used CSI phase difference for the same
purpose. Both [15] and [28] employ directional antennas for the
heartbeat monitoring scenario to boost the radio signal quality. The
main distinction between CardioFi and earlier device-free RF heart-
beat monitoring systems is addressing the accurate HR estimation
problem on COTS WiFi devices without relying on hardware
enhancement. We manage to get reliable heart rate estimation by
efficient data processing and fusing input from informative sub-
carriers only. We believe that enabling vital sign monitoring on
ubiquitous unmodified WiFi devices is a key enabler of many inter-
esting applications including biofeedback.

6 CONCLUSION

In this paper we presented a system for heart rate monitoring on
top of COTS WiFi devices. We showed the challenges of heart beat
tracking on consumer grade WiFi systems and addressed them
by a novel signal processing pipeline without resorting to noise
mitigation hardware (i.e. directional antennas). Our results showed
that the proposed CardioFi system outperforms state-of-the-arts
by reducing their 50- and 90-th percentile error by 40% and 176%,
respectively.
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