
RFWash: A Weakly Supervised Tracking of Hand Hygiene
Technique

Abdelwahed Khamis
UNSW, Sydney, Australia

a.khamiss@unsw.edu.au

Branislav Kusy
CSIRO, Brisbane, Australia

brano.kusy@data61.csiro.au

Chun Tung Chou
UNSW, Sydney, Australia

c.t.chou@unsw.edu.au

Mary-Louise McLaws
UNSW, Sydney, Australia

m.mclaws@unsw.edu.au

Wen Hu
UNSW, Sydney, Australia

wen.hu@unsw.edu.au

ABSTRACT

Each year, hundreds of thousands of people contract Healthcare As-

sociated Infections (HAIs). Poor hand hygiene compliance among

healthcare workers is thought to be the leading cause of HAIs and

methods were developed to measure compliance. Surprisingly, hu-

man observation is still considered the gold standard for measuring

compliance by World Health Organization (WHO). Moreover, no

automated solutions exist for monitoring hand hygiene techniques,

such as “how to hand rub” technique by WHO. In this paper, we

introduce RFWash; the first radio-based device-free system for mon-

itoring Hand Hygiene (HH) technique. On the technical level, HH

gestures are performed back-to-back in a continuous sequence and

pose a significant challenge to conventional two-stage gesture de-

tection and recognition approaches. We propose a deep model that

can be trained on unsegmented naturally-performed HH gesture

sequences. RFWash evaluation demonstrates promising results for

tracking HH gestures, achieving gesture error rate of < 8% when

trained on 10-second segments, which reduces manual labelling

overhead by ≈ 67% compared to fully supervised approach. The

work is a step towards practical RF sensing that can reliably operate

inside future healthcare facilities.

CCS CONCEPTS

•Human-centered computing→Ubiquitous andmobile com-

puting.
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Figure 1: FRWash can monitor alcohol-based handrub

procedure recommended by the WHO. The 9 steps are

marked by the labels G1, G2 etc. Check system demo here

https://youtu.be/t28NXk9XABE

1 INTRODUCTION

Healthcare Associated Infections (HAIs) find their way to one in

twenty five patients admitted to hospitals [2] and continue to lead

to increased patient mortality and healthcare cost [2]. Proper hand

hygiene protocol, i.e. frequent and thorough hand cleaning, is an

effective way to combat HAIs [8]. This leads to the question of how

one can monitor hand hygiene (HH) adherence in an hospital envi-

ronment. The conventional approach for HH adherence monitoring

is to employ a team of observers (e.g., overt nurse trained auditors)

to record Hand Hygiene Opportunities (HHOs) and the number of

times health care workers (HCWs) comply with the protocol. Today,

this is considered to be the gold standard for measuring compliance

by the World Health Organization (WHO).

Attempts to implement automated alternatives for monitoring

HH had a limited success so far. For example, electronic counters

[23] and RFID [29] simply count hand washing activities. These

tools provide a very limited picture of HH adherence. They cannot

reveal whether hand hygiene technique — such as the nine-step

1
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Figure 2: Gesture sequence recognition: Unlike conventional

gesture recognition (left), the proposed model (right) is

trained on unsegmented hand hygiene gestures and predicts

labels for whole sequences of gestures in run-time.

procedure for applying alcohol-based handrub recommenced by

WHO [1], see Fig. 1 (top row)— has been thoroughly adhered to. Al-

though there are commercial camera systems for training HCWs to

learn the correct HH technique, to the best of our knowledge, there

exists no solution for automated monitoring of the HH technique

in healthcare facilities.

This paper proposes to utilize commercial-off-the-shelf mmWave

sensors to monitor the HH technique as shown in Fig. 1. Our vision

is to embed these sensors at the alcohol-based handrub dispensers,

which are distributed throughout the hospitals, to monitor whether

HCWs have adhered to HH technique. Our vision will therefore

enable much more fine-grained monitoring of HH adherence. The

HH technique in Fig. 1 can be decomposed into 9 different hand

movement patterns. While major progress has been made in gesture

recognition using radio frequency (RF) signals recently [22], HH

gesture monitoring presents unique challenges. First, six out of the

nine steps of hand rub are very similar in that they are comprised

of motions with the left and right hands mirrored. Second, some

gestures are performed with two hands interlocked. Finally, the

entire procedure is performed without a pause between consecutive

gestures. Contiguous sequences of gestures have not been inves-

tigated in RF sensing literature before. In fact, previous RF-based

sensing approaches [22] rely on pauses between gestures, which

are employed as physical markers identifying the start and end of

each motion segment. This approach trivially achieves accurate

segmentation and the problem reduces to gesture classification.

Without enforcing the pauses, joint segmentation and classification

becomes a challenging task.

Back-to-back gestures with no pauses defy traditional segmenta-

tion techniques. Due to the significant interdependence between

segmentation and subsequent recognition, poor segmentation, as

we will see in Sec. 3.1 , deteriorates classification performance.

Hence the approach can’t be adapted to hand hygiene tracking.

While the challenge of RF-based contiguous gestures recognition

has been recognized in prior work [22, 32], to the best of our knowl-

edge, no attempts were made to address it. For example, a WiFi-

based sign language recognition system SignFi [22] addresses the

segmentation issue by making the assumption that “manually seg-

mented” single-gesture samples can be acquired. The assumption

is unrealistic and contiguous gesture recognition “introduces many

challenges”[22] to the previous approaches.

In this work, we address the problem by introducing RFWash;

a segmentation-free approach for recognizing back-to-back HH

gestures sequence. We draw inspiration from modern end-to-end

speech recognition systems, which are similar to our problem be-

cause it is difficult to label continuous speech data. Of particular

relevance to our problem are weakly supervised methods that can

learn directly form data without requiring explicit data segmen-

tation and full annotation. To this end, we develop a model that

can be trained on back-to-back gesture sequences (Fig. 2) without

requiring gesture segmentation, which can also reduce labelling

overhead substantially.

A straightforward adaptation of sequence learning, however,

doesn’t work for long HH gestures sequences. Long training se-

quences pose twomajor challenges that RFWash needs to overcome.

First, working with longer sequences leads to fewer training data

points as a fixed-size training set gets split into fewer sub-sequences

proportionally to the sub-sequence length. Second, the number of

possibilities to align minimal gesture label sequence within an RF

HH data sequence grows exponentially with sequence length [19].

Ultimately, the situation becomes ill-posed and results in poor align-

ment(Sec. 5.2). To tackle this, we use data augmentation to signifi-

cantly increase the number of training samples without modifying

the sequence content. Consequently, a significant improvement

of sequence learning is realized. This paper makes the following

contributions:

(1) We propose and implement RFWash, which is the first RF-

based system for device-free monitoring of the nine-step

Alcohol-Based Hand Rub (ABHR) technique.

(2) We characterize the challenges of recognizing back-to-

back HH gestures using an RF-based gesture recognition

processing pipeline. In particular, the lack of pauses between

gestures makes segmentation difficult which, in turn, affects

the performance of the subsequent classification component.

(3) We propose a new sequence learning approach that per-

forms segmentation and recognition simultaneously. The

model can be trained using continuous stream of minimally

labelled RF data corresponding to naturally performed hand-

rub gestures. We further extend the approach using a novel

data augmentation technique to enable training on longer

segments that are less labour intensive.

(4) We extensively evaluate the performance of RFWash

using a dataset of 1,800 gesture samples collected from ten

subjects over 3 months.

2 MOTIVATION

2.1 HH Monitoring in Real World

An ideal automated system for monitoring HH compliance should

be able to detect attempts by HCW to perform hand rub procedures

to trackHHopportunities and to establish compliance rate baselines.

2
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Table 1: Overview of automated HH monitoring systems.

Work
Contact- Hygiene

Inside Wards
Free Tech.

Electronic Counters [23] � � �

RFID [29] � � �

Wearable [16] � � �(pathogens)

RGB Camera [20] � � �(privacy)

Depth Camera [12] � � �(privacy)

Depth Camera [44] � � �(privacy)

RFWash (radar-on-chip) � � �

Additionally, the system should monitor fine-grained parameters

of HH technique (Fig. 1) itself. Such information can provide use-

ful insights and help establish compliance rates of the healthcare

facilities. The system must be capable of running unattended in

real-world healthcare facilities. Prior study of 789 clinicians in a

380-bed tertiary hospital [14] has shown that automated HH train-

ing systems have limited impact on HH compliance as they do not

operate inside wards. The benefits of an automated monitoring

system that evaluates HH in-situ are therefore twofold. It will lead

to improved compliance by reducing the Hawthorne effect [34] (i.e.

inflation in hand hygiene compliance rates caused by behaviour

change due to awareness of being observed by auditors ) and it will

provide quantitative data about hygiene quality within the health-

care facility. Despite the advent of machine learning algorithms for

vision-based systems, the golden standard for assessing the HH in

clinical facilities is direct human observation, which can only moni-

tor a small fraction of hand hygiene opportunities [29]. A complete

and automated HH monitoring system is yet to be realized. Table 1

surveys the key characteristics of current research-based and com-

mercial automated solutions. All existing solutions perform well

only on one or two aspects. More importantly, no solutions exist

for monitoring the hand washing/rubbing process (i.e. 9-step HH

technique recommended by the WHO) inside wards.

2.2 RF Sensing for HH monitoring

Practical solutions for monitoring HH opportunities inside hospi-

tals wards include electronic counters [23] and RFID [29]. Counters

simply count the washing dispenser activities to infer compliance

rates, while RFID systems [29] track hygiene events by the proxim-

ity of healthcare workers from washing dispensers using wearable

RFID tags. RFID is a proximity-based solution with a typical 1-

meter location error and can miss more than 80% of hygiene events.

To provide better localization accuracy, a network of cameras for

tracking staff inside hospital was proposed [12]. However, neither

approach can track the actual hand rub technique.

While no commercial solutions currently exist for tracking hand

rubbing inside hospital wards, research solutions based on cam-

era technology have been proposed [20, 44]. Since privacy regula-

tions such as Health Insurance Portability and Accountability Act

(HIPAA) and General Data Protection Regulation (GDPR) limit the

(a) Depth camera (b) RF ranging heatmap

Figure 3: Genuinely anonymous signal: RF Ranging data has

much lower resolution than frames from co-located Kinect.

use of cameras in healthcare settings [12], camera-based systems

employ image anonymization techniques. One such example [12]

uses a depth camera that conceals color information as each pixel

value in depth image represents the distance between the pixel and

the camera instead of the color. Using depth camera alone does not

provide sufficient privacy guarantees. Despite careful control of the

field of view of the cameras and reduced image resolution [7], the

images can still show detailed visual appearance of a person that

may be used to track her and invade her privacy.

Fig. 3 compares the RF signal from a TI mmWave radar used in

this paper to the depth data from a co-located Kinect depth cam-

era. The camera was mounted in a way that prevents capturing

the subject’s face. While both devices provide ranging information

(i.e., how far objects from the sensing device), the RF heatmap has

a significantly lower personal information content, significantly

reducing the risk of privacy intrusion. We believe that the value of

RF sensing can contribute to many other privacy-sensitive health-

care applications such as ICU activity logging [7, 18].Compared to

other RF sensing technologies like WiFi and RFID, the mmWave

is self-contained (i.e. sender/receiver in one on-the-chip device),

with a small form factor can be easily housed in a hand sani-

tizer bracket, less vulnerable to interference [28] and highly

sensitive to small motions [13]. Additionally, the better spatial

resolution of the mmwave can be leveraged to filter out irrelevant

motions that are often present in the real-world due to other people

or equipment. Together with privacy-protection property discussed

above, these advantagesmake themmWave radar an ideal candidate

for large-scale adoption in real-life healthcare facilities.

3 TECHNICAL MOTIVATION

using dispenser

Time(s)
0 5 10 15 20 25

wrist rubbing

Figure 4: Timeline of HH technique of a practicing HCW.

HCWs are expected to execute the HH protocol at appropriate

occasions at work, e.g. , before and after touching a patient. The

hospitals facilitate this by placing soap or alcohol-based handrub

dispensers at many easily accessible places in and outside of the

wards. HCWs are expected to follow a standard hand cleaning

procedure (Fig. 1) between 20-30 seconds to ensure their hands

3
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are thoroughly cleaned. To understand the current state of HH

practices in healthcare environments, we conducted face-to-face

interviews with active HCWs from Prince of Wales Hospital in

Sydney. During the interview, we asked the HCWs to show us how

they would typically execute their handrub procedure. We used a

camera to record the process 1 and analyzed the video to obtain the

handrub gesture sequence and timing information, see Fig. 4. The

figure shows that the real-life gesture sequence diverges from the

ideal expected sequence shown in Fig. 1 where gestures 𝐺1, 𝐺2, ...,

𝐺9 are executed consecutively. Instead, Fig. 4 shows that gestures

are repeated and are not in the expected order. This is because the

HCW continued to rub her hands until all alcohol dried off her

hands. Furthermore, we also note the timing variation for each

gesture. This simple example illustrates the intricacies involved in

hand rubbing. We expect significant deviation of the real-world

hand rubbing from the ideal protocol.

Based on the above observations, the first goal of RFWash is

to accurately track the sequence of gesture poses performed by a

HCW. The recorded sequence can be compared to the expected set

of poses𝐺1,𝐺2, · · · ,𝐺9, e.g. by comparing the union of the detected

poses to the set of expected poses. Additionally, RFWash tracks

the timing information to help in assessing compliance against

the 20-30 second duration guidelines. More complex compliance

analysis based on the pose sequence and timing information could

be done, but is beyond the scope of this paper.

3.1 Back-to-back Gesture Tracking

In this section, we explore the limitations of existing RF gesture

processing algorithms in the HH scenario. Popular RF gesture

recognition approaches follow a two-stage architecture, with detec-

tion/segmentation step followed by recognition step [4, 22, 37, 38].

Here, a critical assumption is that we can segment the RF time-

series into segments where each segment contains one gesture only.

Hence, a classifier can be trained and tested on these well-separated

segments.

Typically, segmentation is done in one of two ways:

• Gestures are naturally segmentable. The users introduce a brief

pause before and after performing each gesture [38], whichmakes

the detection of the start and end of individual gestures simpler

(Fig. 5b). Training samples either contain only relevant gesture

data [32, 38] or the gesture data with additional samples that rep-

resent “no gesture” [27]. In the run-time, a segmentation module

automatically segments gestures utilizing no motion or “silent”

periods.

• Users annotate continuous gestures manually. Applications such

as sign language recognition do not have segmentable gestures

and the automated segmentation step from the previous ap-

proach fails. The limitation can be overcome by manual segmen-

tation [22], i.e., manual extraction of segments, each of which

contains a gesture. The key drawback of such approach is the

high intensity of labour that the manual segmentation requires.

The labelling of RF signals is not intuitive and can introduce

errors compared to more natural modalities, such as video .

1Ethical approval has been granted by the University of New South Wales (Approval
Number HC180818)

(a) Back-to-back Gestures. Top: Doppler measurements of back-

to-backhand rub gestures.Bottom:Differentiated principal com-

ponent of the measurements. Vertical lines mark the start and

end of each gesture.

(b) Segmentable Gestures: Differentiated principal component

of segmentable gesture stream (adapted from [38]).

(c) Manually Segmented Gestures: PCA of manually segmented

sign language gestures samples from public dataset [22]

Figure 5: Back-to-back vs segmentable vs manually seg-

mented gestures

Why do we propose to use a segmentation-free approach? Fig. 5a

shows the Doppler measurements (top graph) and its differentiated

principal component (bottom graph) of a real-life execution of the

HH technique. The vertical lines in the bottom graph show the

correct gesture boundaries. It shows that gesture boundaries are

sharp with minimal period of “no gesture” samples in between.

Therefore, threshold-based segmentation [32] fails to recognize ges-

ture boundaries. Consequently, most segmented sequences contain

RF signatures from multiple gestures. A classifier trained on such

data will perform poorly.

The impact of segmentation errors.

To quantify the errors due to inaccurate segmentation, we ap-

plied SignFi algorithm [22] to RF traces of HH gestures. The al-

gorithm uses a deep CNN architecture originally designed to clas-

sify 276 sign language gestures, which we adapted to better suit

our application scenario2. We evaluated SignFi on our dataset of

naturally-performed HH technique from ten subjects using manu-

ally segmented samples that contain exactly one gesture in each

segment3. Using two-second Doppler Range measurements and

session-based cross-validation, we obtained accuracy of 83.3% (see

Sec. 4.1 for the details). The confusion matrix (Fig. 6c) shows that

the accuracy is more than 79% for most gestures except for some

of the mirrored gestures, i.e., 𝐺6/𝐺7 and 𝐺9. Anecdotally, RF sig-

natures of (𝐺6,𝐺7) and (𝐺8,𝐺9) are similar to each other and are

more likely to result in incorrect classification.

2The convolutional layer in [22] has three 3𝑥3 kernels. This produced poor results on
our Range Doppler measurements, hence, we increased the number of kernels from 3
to 512, which improved its performance significantly.
3Sample-level labelling was done using a synchronized camera.

4
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(a) Segmentation error (b) Imapct of of seg. error on Accu-

racy

(c) cf matrix, manual seg. (d) cf matrix,seg. error: 0.5 → 1s

Figure 6: Classification is highly dependent on segmentation quality in RF gesture recognition systems

Table 2: Time cost for manual and sequence labelling

Method RF data Labelling Saving

Manual Segmentation 4 mins @ 8Hz 18 mins -

10𝑠 Sequence labelling 4 mins @ 8Hz 6 mins 66.6%

To investigate the effect of segmentation error, we deliberately

allowed segments to contain a few samples from neighbouring

gestures. We ensured that the majority of the samples in a segment

corresponded to the target gesture (see Fig. 6a for an illustration). In

particular, we allow for an overlap of 1-25% and 25-50%, correspond-

ing to 0.2-0.5 second and 0.5-1 second overlaps, respectively. This

allowed us to study the impact of different levels of segmentation

error on the classification accuracy. Fig. 6b shows that the accuracy

gets worse when the segmentation error increases. This shows that

SignFi does not handle the segmentation errors well.

The cost of manual segmentation and labelling. Since RF samples

are difficult to label and segment directly, we used a synchronized

video camera in our experiment. The gestures were identified in

the video and labels were propagated to the corresponding RF

signatures. Despite using the camera feed as a visual aid, we found

the process very time-consuming andwe investigated an alternative

method for annotating RF segments.

Sequence labelling. We introduce a new approach, which we

call sequence labelling, to reduce the complexity of manual labelling.

Two key ideas in sequence labelling are: 1) We ask users to annotate

relatively long continuous sequences of data; and 2) We request

users to annotate gesture sequences without capturing the exact

timing information of individual gesture boundaries.

Let us consider an example. Assume that we have a collection

of 20 data frames {𝑓0, . . . , 𝑓19} which contains the gestures𝐺1,𝐺2,
and 𝐺3 in that order. Manual segmentation requires us to identify

gesture boundaries or map each frame to a gesture, e.g. the anno-

tated sequence is 𝐺1 ∈ [𝑓0, 𝑓5],𝐺2 ∈ [𝑓6, 𝑓13],𝐺3 ∈ [𝑓14, 𝑓19]. In
contrast, sequence labelling will annotate this collection of frames

simply as 𝐺1 → 𝐺2 → 𝐺3, which says the order of gestures in

the frames are 𝐺1, 𝐺2 and 𝐺3 without having to specify transition

times. The work to obtain sequence labelling is therefore lower.

We quantified the time required to performmanual segmentation

and sequence labelling experimentally. We asked 3 annotators to

label four minutes of RF data sampled at 8 Hz using these methods.

The average time taken is shown in Table 2. On average, manual

segmentation took 18 minutes while sequence labelling took only

6 minutes, resulting in a saving of ≈ 66.6%. We note that manual

labelling and segmentation cost can be significantly higher for

higher RF sampling rates such as 200Hz in [22] or 1kHz in [32, 37].

We will show in the next section that it is possible to achieve highly

accurate gesture segmentation and classification, based on sequence

labels. In contrast to classical supervised learning, which requires

fully annotated data, our weakly supervised method only requires

minimally labelled data.

Summary: The assumption of easily segmentable input that

is commonly used by existing RF-based gesture recognition ap-

proaches does not hold in the HH gesture recognition scenario. We

show that the HH gesture classification accuracy depends heavily

on the segmentation quality. While good quality classifiers can be

developed using manually segmented data, this incurs substantial

labelling costs. Inspired by methods from speech and handwriting

recognition literature, RFWash departs from the existing RF sensing

segmentation approaches and proposes new methods to learn from

weakly labelled unsegmented data.

4 RFWASH

Fig. 7 shows the architecture of the proposed RFWash framework.

RFWash is trained on sequences of HH gestures in the RF space and

their corresponding sequence labels. As discussed in the previous

section, a sequence label only contains the order of the gestures in

the segment. The training process, therefore, needs to determine

the most likely mapping of gesture labels to each RF frame. This is

done through the process we call alignment learning. At runtime,

RFWash model internally assigns likelihood to each (input RF frame,

gesture) pair, which is then used to infer the most likely gesture

sequence. Before we delve into details about the model itself, we

explain the input RF measurements in the next section.

4.1 RF Measurements

RFWash uses mmWave radar mounted on a soap dispenser, to

collect RF signatures of subjects that perform hand cleaning. Fig. 8a

shows the system setup. While many subjects may be present in a

hospital environment, a subject that performs hand cleaning will

stand close to the radar (e.g., within 1 m). The subject will face the

5
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Model
(trained)

B

Training

Runtime

f1 f3 f4 f6
G1
G2
G3...

f2 f5

RD
 frames

Model sequence label

predicted
sequence

alignment
learning { [ ],G1 G2

A

[ ], ,G2 G3G1

Figure 7: RFWash is trained on continuous RF samples (A) of

HH gestures and corresponding sequence labels. The model

automatically learnswhich frames correspond to individual

gestures (e.g.𝐺1 vs𝐺2) through “alignment learning”. In run-

time, per-frame gesture predictions (B) are produced and

used to estimate the most likely gesture sequence .

radar and her hands will be at approximately the same height as

the radar. Consequently, our goal is to measure the velocity of her

hand motions and filter out other irrelevant signals.

A mmWave radar transmits a sinusoidal wave 𝑇 (𝑡), called a

“chirp”, of linearly changing frequency and a time delayed version

of the transmitted signal is received for every reflector in the en-

vironment, including the hands of the subject washing her hands.

Formally, the frequency of a chirp at time 𝑡 can be expressed as:

𝑓𝑡 = 𝑓0 +
𝐵

𝑇
𝑡, (1)

where 𝑓0 is the starting frequency of the chirp, 𝐵 is the bandwidth

and 𝑇 is the chirp duration. Let 𝐴(𝑡) be the amplitude of 𝑇 (𝑡) at
time 𝑡 . The transmitted signal 𝑇 (𝑡) can be expressed as :

𝑇 (𝑡) = 𝐴(𝑡) sin(2𝜋 (𝑓0𝑡 +
𝐵

2𝑇
𝑡2)). (2)

When the transmitted signal is reflected by a stationary object

at distance 𝐷0 from the radar, the reflected signal 𝑅(𝑡) is:

𝑅(𝑡) = 𝐸 (𝑡) sin(2𝜋 (𝑓0 (𝑡 − 𝑡𝑑 ) +
𝐵

2𝑇
(𝑡 − 𝑡𝑑 )

2)), (3)

where 𝐸 (𝑡) is the amplitude modulated by the object, the round-trip

time delay is 𝑡𝑑 = (2𝐷0)/𝑐 with 𝑐 being the speed of light.

The signals 𝑇 (𝑡) and 𝑅(𝑡) are mixed on the radar to produce the

received signal 𝑆 (𝑡). It can be shown that 𝑆 (𝑡) has two frequency

components: 1) the difference in frequencies between𝑇 (𝑡) and 𝑅(𝑡),
2) the sum of their frequencies. A low pass filter can be applied to

remove the second component:

𝑆 (𝑡) ≈ 𝐶 (𝑡) cos(2𝜋 (
2𝐵𝐷0

𝑐𝑇
𝑡 +

2𝑓0𝐷0

𝑐
)). (4)

where 𝐶 (𝑡) is the amplitude. The frequency of 𝑆 (𝑡), which is given

by 2𝐵𝐷0

𝑐𝑇 , is called beat frequency and can be used to estimate the

objects distance 𝐷0.

(a) Main subject facing the a radar and performing hand

rub while an interfering subject( masked in green) pass-

ing from behind

(b) Consecutive RDmeasurements frames showingmain

subject (𝑆𝑀 ) can be separated from passing interfering

subject (𝑆𝐼 ) by range cutoff.

Figure 8: RD frames measurements

In general, there are multiple objects in the vicinity of the radar

and the mixed received signal will contain multiple beat frequen-

cies. We can resolve these with Fast Fourier Transform (FFT) and

consequently compute distances between each object and the radar.

However, range alone does not provide sufficient information

to solve our problem. The subject’s hands during the handrub are

very close to each other during the entire procedure. We need more

information to differentiate the gestures. Fortunately, the mmWave

radar allows us to measure Doppler frequency shift in the 𝑆 (𝑡)
signal, through which we can obtain the velocity of the objects

moving in the scene.

We use mmWave signal 𝑆 (𝑡) to derive intensity map of the scene

shown in Fig. 8b. Intensity map 𝐼 (𝑡, 𝑟, 𝑣) has the following interpre-

tation: the intensity 𝐼 (𝑡, 𝑟, 𝑣) is higher if there is a higher chance
at time 𝑡 of finding an object located at distance 𝑟 from the radar

and moving at speed 𝑣 . Fig. 8b shows the intensity map at three

different time instants, with 𝑟 plotted from 0 to 3m, and 𝑣 from -2 to

2 m/s. Large intensity is shown in red. We will refer to the intensity

map 𝐼 (𝑡, 𝑟, 𝑣) at a point in time as a Range-Doppler (RD) frame.
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postive Doppler

negative Doppler

Figure 9: Example RD frames for gesture 𝐺4. Video preview

of the motion: https://youtu.be/t28NXk9XABE

RFWash needs to be robust to interference from nearby moving

objects and people. Fig. 8a shows a subject performing handrub in

front of the radar. The green person in the figure is within the range

of the radar and acts an as interferer. Fig. 8b shows RD frames at

three time instants, with the location of the subject’s hands and

interferer marked by 𝑆𝑀 and 𝑆𝐼 , respectively. We note that the

intensity of all RD frames stay approximately unaffected in the 𝑆𝑀
region, by the interferer’s movement (dotted ellipses in Fig. 8b).

From now on, we limit the range 𝑟 to less than 1m so as to focus

on the main subject only. For illustration, we show RD frames for

one gesture (𝐺4) in which the user is rubbing palms with fingers

interlaced. This motion pattern results in simultaneous Doppler

change in the positive and negative directions as shown in Fig. 9.

We perform interference removal and de-noising [40]. These steps

remove the static reflection of the torso of the subject and amplify

hand motions related to the gesture performed in the RD frame. The

input to RFWash deep model is a stack of processed and normalized

RD frames after applying cutoff at 1m to each frame and resizing

them to 50 × 50 pixels.

4.2 Deep Learning Model
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Figure 10: RFWash Network Architecture. All convolutions

are 3 × 3 (the number of filters are denoted in each box).

The layering structure of our deep learningmodel is shown in Fig.

10. Convolution(Conv) layers followed by Max Pooling (2x2), Fully

Connected (FC) and Bidirectional LSTM layers are employed for

extracting spatiotemporal gesture features from input RD frames,

a softmax layer. Connectionist Temporal Classification (CTC) is

employed to predict the gesture sequence.

As illustrated in Fig. 7, RFWash takes a segment consisting of

stack of consecutive 𝑇 RD frames 𝑋 = [𝑥1, ..., 𝑥𝑇 ] ∈ R50×50×𝑇

from continuous stream as input. The goal is to infer the gesture

sequence ℓ performed by a HCW where ℓ = [ℓ1, ℓ2, .., ℓ𝐾 ] ∈ A1×𝐾

where A is the set of possible gestures and 𝐾 ≤ 𝑇 . Note that

the continuous segment can contain irrelevant motions (i.e. user

stationary or walking away from device) or gestures irrelevant to

the nine poses (i.e. wrist washing). Thus we define an additional “no

gesture” class𝐺No to handle irrelevant motions and other gestures.

Ultimately, the set possible gestures A = {𝐺No} ∪ {𝐺1, ...,𝐺9}.

Recall that we use sequence label ℓ , rather than frame-by-frame la-

bel 𝜋 = [𝜋1, · · · , 𝜋𝑇 ] ∈ A1×𝑇 to reduce the labelling cost (Sec. 3.1).

𝜋 is also called gesture path. An associated challenge with ℓ is the
lack of temporal alignment as it can be compatible withmany plausi-

ble gesture paths. For example, if the sequence label is𝐺1 → 𝐺2 for

an input of 4 frames, the label is compatible with the gesture paths

[𝐺1,𝐺2,𝐺2,𝐺2], [𝐺1,𝐺1,𝐺2,𝐺2] and [𝐺1,𝐺1,𝐺1,𝐺2]. Intuitively,

the model resolves this challenge by considering the probability of

all plausible gestures paths for a particular sequence label.

4.2.1 Spatiotemporal Feature Extraction. Motions captured by the

mmWave radar in a single RD frame have identifiable spatial pat-

tern on range and velocity dimensions. Additionally, the temporal

dynamics of each gesture will be present in consecutive RD frames.

We utilize spatiotemporal feature extraction layers composed of

five Convolutional layers followed by a fully connected layer and

two RNN (Recurrent Neural Network) layers. RNN achieve good

performance in sequential data modeling and are a good choice

for capturing temporal dynamics of the gestures. However, in the

context of HH technique, the mirrored gestures discussed in Sec. 3.1,

present unique challenges because of their similarity in RF domain.

Therefore, we employ bidirectional recurrent layers with LSTM cell

type (BiLSTM [31]) to enable the network to use all available input

information in the past and the future from a specific RD frame.

In this configuration, two separate recurrent layers running in the

forward direction (future) and the backward direction (past) are

utilized to learn the complex temporal dynamics.

The spatiotemporal feature extraction layers and softmax activa-

tion process input RD frames𝑋 to produce frame-wise probabilities

of different gestures 𝑌 , which we call BiLSTM posterior. 𝑌 can

be interpreted as the probability of observing 𝐴 gestures across

𝑇 frames. This is further processed by the temporal alignment to

estimate the most likely gesture sequence.

4.2.2 Temporal Alignment Learning. RFWash implements align-

ment learning to infer the hand rub gesture sequence by mapping

the output of BiLSTM components (i.e., BiLSTM posterior) to the

corresponding gesture path. We rely on CTC algorithm [11], which

is explained next in details.

Let 𝑌 = [𝑦1, · · · , 𝑦𝑇 ] ∈ R𝐴×𝑇 be the softmax-normalized BiL-

STM output for a stack of𝑇 RD frames, where𝐴 = |A∪{𝜙}| where
𝜙 denotes a blank. A blank is used by CTC to account for the proba-

bility of observing ‘no labels’ and modeling the transition between

gestures within sequence. This means 𝐴 = 11 for RFWash. The

vector 𝑦𝑡 , 𝑡 ∈ {1, . . . ,𝑇 } can be interpreted as follows: 𝑦𝑡,𝑘 denotes

the probability that the gesture at time 𝑡 is 𝑘 where 𝑘 = 1, . . . , 𝐴.
We can calculate posterior probability for any gesture path 𝜋 =

[𝜋1, · · · , 𝜋𝑇 ] given the observations 𝑋 as follows:

𝑃 (𝜋 |𝑋 ) =
𝑇∏

𝑡=1

𝑦𝑡,𝜋𝑡 , ∀𝜋𝑡 ∈ A. (5)
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We note that the posterior probabilities obtained in Eq. ( 5) are

conditionally independent for different gesture paths. This is desir-

able in our context, as we do not want the gesture classifier to be

dependable on the order of gestures in the training data.

In the CTC framework, the probability of the sequence label ℓ is
the sum of the probabilities of all its compatible gesture paths:

𝑃 (ℓ |𝑋 ) =
∑

{𝜋 |B (𝜋 )=ℓ }

𝑃 (𝜋 |𝑋 ), (6)

where B is an operator that removes consecutive label repeti-

tions and blanks in 𝜋 . Intuitively, Eq. ( 6) considers all possible
alignments in ℓ 4. The most probable sequence label ℓ∗ can be

predicted as:
ℓ∗ = argmax

ℓ
𝑃 (ℓ |𝑋 ), (7)

and the network can be trained using standard back-propagation

method, minimizing the following:

L(ℓ, 𝑋 ) = − log 𝑃 (ℓ |𝑋 ). (8)

For gesture timing estimation, we first process BiLSTM output

to estimate the top gesture path 𝜋 = [𝜋1, . . . , 𝜋𝑇 ] by selecting the

gesture with the top probability at each frame . Then we set the

starting time of a gesture to the frame with highest probability for

that particular gesture. Finally, the end time is set to frame before

the starting point of next gesture in sequence or the end of segment.

Data augmentation Up to this point, the model training can

proceed using unsegmented input 𝑋 of arbitrary lengths 𝑇 and the

corresponding sequence labels ℓ (Eq. ( 8)). Larger 𝑇 will reduce the

annotation effort as fewer sequences need to be annotated for a

given training set. However, very long segments would result in a

few training samples. Additionally, according to our experimental

observation (Sec. 5.2), training on long sequences results in poor

temporal alignment. Since we can’t tamper with sub-sequences,

RFWash employs “order preserving” concatenation of existing sam-

ples to augment training data that can lead to the increase of the

number of samples quadratically. For example, let𝑋𝑎 and𝑋𝑏 be two

stacks of RD frames, and their corresponding sequence labels are

ℓ𝑎 and ℓ𝑏 . A new stack is obtained by concatenating 𝑋𝑎 and 𝑋𝑏 to

form [𝑋𝑎, 𝑋𝑏 ] and its corresponding sequence label is B([ℓ𝑎, ℓ𝑏 ]).
Concatenation is applied on the training sequences from same and

different users. We use the augmentation to increase dataset by

the maximum of 10x. Prior to applying “order preserving” aug-

mentation on the sequences level, we apply random jittering [35]

on the the individual RD frames within each sequence. Jittering

simulates the random noise that can be present in wireless radio

environments and ensures no two sequences (after applying “order

preserving augmentation”) have the exact same copy of RD frame.

5 EVALUATION

We collected natural back-to-back handrub data where subjects

move between gestures without pausing. This was followed in

all data collection sessions. RFWash prototype uses TI mmWave

IWR1443 sensor [3] that operates in the 60GHz to collect RF mea-

surements at 8 Hz. RD measurements in our setup are exported

with a ranging resolution of ≈ 4 cm and velocity resolution of

0.25𝑚𝑠−1. The deep model can process 10s segments (80 frames)

4We note that the CTC forward backward algorithm is more efficient than considering
all possibilities [11].

within 57.5±3.1ms and 480±20ms on, respectively, GPU (Nividia

GeForce RTX 2080 Ti) and CPU (3.70 GHz Intel XeonW-2135). Thus,

the data can be processed at rate of 166 Hz on commodity hardware

with a pure CPU implementation. We recruited ten subjects for data

collection (8 males and 2 females)5. The subjects’ heights ranged

from 160cm to 193cm. We observe that the participant’s height had

a limited impact on the RD pattern captured in our experiments. A

possible reason is the poor angular resolution of the radar in the

vertical direction compared to horizontal direction (15◦ in azimuth

and 58◦ in elevation)[3, 21] which causes motions towards/away

from the radar to dominate. The subjects had no previous expe-

rience with the handrub procedure. They were shown a video of

hand rubbing produced by the WHO, and they were asked to repeat

the whole process two times before starting data collection.

In each session, a subject performed the handrub gestures from

𝐺1 → 𝐺9 then stayed stationary or walked away from the device

and returned. Note that subjects could miss one or more gesture. We

collected a total of 1800 gesture samples (10 subjects × 4 sessions ×

5 repetitions × 9 gestures). Also, we collected additional “unseen

gesture sequence” dataset (Sec. 5.2.2) where the subjects perform

handrub gestures in a random order. Time taken by subjects in each

gesture is shown in Fig. 11a (average time is 3.2s). All sessions were

recorded using synchronization between video and RF frames from

radar was done using NTP. Later, a human auditor inspected the

recorded video and labelled the video frame-by-frame. Following

[39], we employ session-based cross validation for evaluation by

default. In this scheme one hand rubbing session is held out for test

and the rest are used for training.

Table 3: Gesture Error Rate (GER) examples

Ground truth Prediction GER explanation

[𝐺2] [𝐺2] 0% -

[𝐺2] [𝐺1,𝐺2] 100% deletion
length of ground truth

[𝐺2] [𝐺1,𝐺3] 200% substitution+deletion
length of ground truth

5.0.1 Metrics. To evaluate the performance of RFWash, we use the

following metrics:

• Gesture Error Rate (GER): defined as the minimum number of

gesture insertions, substitutions, and deletions needed to trans-

form the predicted gesture sequence into the ground truth ges-

ture sequence, divided by the number of gestures in the ground

truth. Table 3 shows a few examples of GER. This metric mimics

Word Error Rate (WER) which is a standard metric in sequence

recognition problems.

• Exact Match Rate (EMR): defined as the percentage of pre-

dicted sequence that exactly match ground truth (i.e. sequences

with GER = 0%).

• Timing Error: this is the difference between gesture estimated

time and ground truth timing. Gesture timing error is calculated

for gesture sequences with EMR of 100%.

5.1 Weakly Supervised Gesture Tracking

We evaluate the gesture sequence recognition of RFWash using the

three metrics discussed earlier. Fig. 11b shows the mean GER when

5Ethical approval has been granted by the University of New South Wales (Approval
Number HC180818).
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(a) Gestures durations stats (b) Gesture Error Rate
(c) Exact Match Rate (d) Procedure Timing Error

(e) Per-step Timing Error
(f) Per-procedure alignment. Thick blocks denote pe-

riods of performing the sequence [𝐺1,𝐺2, · · · ,𝐺9 ].

(g) Per-setp alignment.

Figure 11: RFWash evaluation for different gesture sequence lengths.

RFWash is trained/tested on sequences with lengths of one, five

and ten seconds, respectively.

Results show that RFWash trained on 10 second sequences achieves

GER of 7.41% which translates to a mere 0.45 substitutions, dele-

tions or insertions to make the sequence match the ground truth per

maximum number of 6 observed gestures in the sequence. Table 4

shows that the average(𝜇) and maximum (𝑚𝑎𝑥 ) number of gestures

in each sequence length along with mean and median GER. The

median is zero as more than 75% of the sequences are correct with

GER of zero. The table also shows that the GER decreases for larger

sequences. This is because the number of errors (i.e., the numerator

in GER equation) is relatively constant even as the sequence length

increases. We observe that edits are usually required at the end

of the sequence. We hypothesize that a gesture at the end of the

sequence contains relatively fewer RD frames than other gestures

due to the overlap with the next sequence. On the other hand, EMR

is fairly constant across the different sequence lengths, as shown

in Fig. 11c.

Table 4: The gesture recognition accuracy of RFWash

sequence length gestures/sequence mean GER median GER

1s 𝜇:1,max:2 16.01% 0%

5s 𝜇:2,max:4 11.01% 0%

10s 𝜇:4,max:6 7.41% 0%

Recall that HCW are required to perform hand rub procedure (i.e.

the nine steps) for at least 20s. We evaluate RFwash in capturing

the timing of the whole handrub procedure. As the user approaches

the radar, performs the procedure then walk away or stays sta-

tionary, we report the procedure time as the time of between two

consecutive𝐺No. The results in Fig. 11d shows that procedure time

can be estimated with very high accuracy with median error of

0s regardless of the sequence length used for training. Also, we

calculated the per-step (i.e. per gesture) timing error in Fig. 11e. In

general, it shows that the per-step timing error is larger than the

procedure timing error. The medians absolute errors in per-step

case are 0.49s, 1.17s and 1.88s for different sequence lengths of 2s,

5s and 10s; respectively.

The reason behind better procedure alignment compared to per-

step alignment is that 𝐺No pattern is highly distinguishable from

the rest of the gestures. This makes accurate identification of the

whole procedure boundaries possible even when using large se-

quence length (10s). On the other hand, back-to-back steps within

the procedure may show similar patterns specially for mirrored

gestures. Fig. 11f and 11g qualitatively compare the alignment per-

formance for procedure and step levels; respectively. Fig. 11g il-

lustrates per-step alignment accuracy degrade as we increase the

training sequence length. Note that as the gestures are following

each other in back-to-back manner, timing error in one gesture will

contribute equally to the neighbouring gestures.

5.1.1 The Impact of Data Augmentation. We investigate the impact

of data augmentation introduced in Sec. 4.2.2 on the performance of

RFWash. For the benefit of space, we show the results of sequences

of 5s as other sequence lengths show similar patterns. Fig. 12 shows

9
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(a) Exact match rates. (b) Gesture error rates.

Figure 12: The impact of data augmentation.

that data augmentation improves the performance of RFWash sig-

nificantly. Specifically, it increases the EMR from 69.2 % to 75% and

reduces mean GER from 13.6% to 11.01%. More importantly, the

box plot in Fig. 12b shows that the majority of gesture sequence

matches the ground truth, i.e., GER = 0.

5.2 Unseen Domains

We evaluate RFWash performance in unseen domains. This includes

unseen sequence lengths, unseen gesture sequences and unseen

subjects. Recall that RFWash predicts unseen gestures as 𝐺NO

and a misclassification of 𝐺NO within a sequence contributes to

the Gesture Error Rate (GER) for that particular sequence. Thus,

quantitative results in Sec. 5.1 cover "unseen gestures".

5.2.1 Unseen Sequence Length. RFWash accepts radar signals of

variable lengths as valid inputs (see Sec. 4.2.2). We evaluate the

performance of RFWash with input sequence lengths that are differ-

ent from those in the training data. The ability to classify variable

length sequence is an advantage. For example, short segments have

smaller latency and are preferable in scenarios where quick user

feedback is needed. Longer sequences have better recognition per-

formance and may be preferable for HH compliance audits which

can be performed offline.

Fig. 15a, 15b and 15c show that unseen sequence length has neg-

ative impact on the performance of RFWash. However, the negative

impact can be reduced by data augmentation, achieving signifi-

cant improvements for all metrics. For example, for 15s sequence

length, data augmentation improves RFWash performance by more

than 2.8x, 4x and 12x, for timing estimation error, GER and EMR,

respectively. We investigate this in more detail for one specific

segment shown in Fig. 16. BiLSTM posteriors for three different

sequence lengths of 3.1s, 6.25s and 12.5s are shown. Note that only

the 6.25s sequence was included in training data. The predicted ges-

ture sequence (𝐺2,𝐺3,𝐺4,𝐺5) for the previously seen 6s sequence

is correct, both with and without data augmentation (see Fig. 16b).

However, data augmentation produces significantly better temporal

alignment. For unseen sequence lengths (Fig. 16a and 16c), data

augmentation produces significantly better GER and temporal align-

ment. For example, 𝐺2 is a false positive in Fig. 16a, while 𝐺2,𝐺3

and 𝐺7 are false negatives in Fig. 16c for RFWash without data

augmentation. RFWash with data augmentation hasn’t produced

any incorrect predictions here. We have observed similar behavior

for many other segments of signals.

(a) Gesture error rates. (b) Exact match rates.

Figure 13: The impact of Unseen Gesture Sequences. “un-

seen” bars report performance when testing on gestures se-

quences performed in order not seen during training.

Figure 14: Impact of unseen subjects

5.2.2 Unseen Gesture Sequences. We evaluate the performance of

RFWash on recognizing unseen gesture sequences. It is important

RFWash performs well on unseen sequences as a HCW may follow

any order of gestures (see Fig. 4 for an example), and it is difficult to

collect data for all possible gesture sequences. Recall that RFWash

was trained on sequences 𝐺1 → 𝐺9 (see Sec. 5). To test RFWash

performance on unseen gesture sequences, we collected additional

data with hand washing gestures performed in random orders (for

example, 𝐺9 → 𝐺8 · · · → 𝐺1). The additional samples collected

from 4 subjects with 1-3 sessions/subjectmaking a total of 8 sessions.

Fig. 13 shows that RFWash with data augmentation performs well

on unseen gesture sequences. Specifically, using full augmented

dataset (1x Aug.) reduces GER by 14% compared to w/o Aug. case.

This performance slightly worse (4% difference in GER) compared

to testing on previously seen sequences (“all seen”). Training with

half the augmented dataset (0.5𝑥 Aug.) decreases mean GER by less

than 5%. This suggests that augmentation allows RFWash to close

the gap on unseen sequences and, reach the performance that is

close to the previously seen sequences.

5.2.3 Unseen Subjects. RFWash focuses on HH tracking for HCWs

where acquiring samples from new subjects can be beneficial for

identification (Sec. 7). In order to understand how the system per-

forms for unseen subjects, we conducted a standard leave-one-

subject-out cross validation [39] using 5s training sequences. Fig.14

shows that GER for unseen subjects is on average 22%, which is 11%
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(a) Gesture error rates. (b) Exact match rate. (c) Timing

Figure 15: Impact of unseen sequence length. Vertical shaded areas highlights the sequence length used in the training.

(a)
Alignment for unseen sequence length of

3.1s. (b)

Alignment for reference (seen) sequence

length of 6.2s. We use this segment length

for training.

(c)
Alignment for unseen sequence length of

12.45s
.

Figure 16: Temporal HH gesture alignment. GT: Ground truth. aug: with data augmentation. w/o: without data augmentation

higher compared to training on all data in (Fig. 11b). For a 3-gesture

sequence, this is equal to an average of 0.66 gesture edit to get an

exact match on the ground truth. RFWash achieved the average

EMR of 63.9%, with 87% of the sequences either matching or being

a single gesture away from the ground truth. We have investigated

subject 𝑆9 in more detail as it shows a higher error with a mean GER

of 32%. We found that errors corresponded mostly to sequences

containing gestures 𝐺2 and/or 𝐺3 suggesting that confusion may

be caused by subject’s personal differences in performing those

gestures. Nevertheless, without explicitly suppressing subjects im-

pact using adversarial methods (as in [41]), 80% of the subject’s

sequences deviate from the ground truth by at most a single gesture.

We note that while 32% GER might seem high, the inset plot in Fig

14 shows a few examples of sequences performed by 𝑆9 where the

prediction is off by one gesture and GER error is 33-50%.

5.3 LSTM vs BiLSTM

Table 5: LSTM vs BiLSTM

Model 2s 5s 10s

GER EMR GER EMR GER EMR

(LSTM) 20.7% 69.3% 18% 54% 17.7% 44.36%

(BiLSTM) 16% 76% 11% 75.28% 7.41% 76.69%

We investigate the impact of different RFWash deep learning

model parameters. Specifically, we compare the performance of

CNN + LSTM and CNN + BiLSTM in Table 5, which shows that the

proposed deep learning model with BiLSTM consistently performs

better than that with LSTM, and the performance gap increases

with the sequence length.

5.4 Comparison with Fully Supervised DL
Models

In this section, we compare the performance of RFWash model to

state-of-the-art supervised deep learning based approaches includ-

ing C3D [36] and DeepSoli [39]. C3D has a 3D CNN that outper-

forms 2D CNN in large scale vision-based gesture recognition [17].

DeepSoli employs deep Convolutional Recurrentmodel to recognize

finger gestures and operates on mmWave Range Doppler measure-

ments of Google’s Soli sensor [39] C3D and DeepSoli are trained

on manually segmented RD frames and tested on continuous

HH gesture stream using auto segmentation of a sliding window

length of 8 RD frames and an overlap of 7 samples. To improve the

accuracy, prediction pooling (p) is applied to C3D and DeepSoli by

summing up softmax activation and using the average activation for

gesture prediction [39]. RFWash is trained on continuous gesture

stream data as usual with sequence length set to 2s.

Table 6 shows that RFWash outperforms the alternative ap-

proaches with an overall accuracy of 85%, which is 7% and 20%

higher than C3D(p) and DeepSoli (p); respectively. We note the

poor performance of DeepSoli is probably due to the low sampling

rates of TI mmWave radar sensors, which is significantly lower

than those of Soli radar sensors. RFWash achieves highest accuracy

for most gestures except for 𝐺2, 𝐺3 and 𝐺8. Furthermore, it has

the additional advantage of “weak” supervision, i.e., without the
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requirement of intensive manual per RD frame labelling.RFWash

accuracy is 4% to 9% lower than RGB (89%[20]) and depth (94%[44])

camera systems. Such systems leverage the much shorter wave-

length [9] to capture exact hands shape for enhanced recognition.

On the other hand, the “substantial ethical and privacy” concerns

prevent using them in clinical areas as experienced by [5] .
Table 6: Recognition accuracy for different deep models

Gesture C3D C3D(p) DSoli DSoli(p) RFWash

𝐺No 92.5% 95.1% 92.5% 94.6% 97.8%

𝐺1 69.3% 72.4% 41.6% 40.9% 92.1%

𝐺2 68.3% 76.7% 88% 89.8% 85.4%

𝐺3 84.2% 92.9% 76.1% 77.8 87.2%

𝐺4 82.2% 83.9% 77.5% 80.8% 89.7%

𝐺5 84.4% 86.4% 33.1% 34.9% 87.7%

𝐺6 48.2% 43.7% 20.3% 18.8% 71.4%

𝐺7 70.4% 69.3% 74.1% 77.2% 79.6%

𝐺8 56.7% 66.3% 76.6% 80.6% 77.7%

𝐺9 66.1% 75.9% 42% 42.1% 84.2%

Accuracy 73.33% 77% 63.15% 64.79% 85%

6 RELATEDWORK

HH Monitoring Automated solutions for HH monitoring range

from simple product consumption [6] and dispenser activations

monitoring [15, 24] to RFID badge systems [29] for identifying

the HCWs who perform HH. Also, Cameras [20] were used to

enable better tracking dispenser usage. A common limitation of

these approaches is that the actual HH technique is not monitored.

Previous works for monitoring HH technique either employed

RGB [20] or depth [44] cameras which raises privacy concerns [5,

12] in healthcare environments, or wearable sensors [16] that may

cause transmission of health care-associated pathogens. RFWash,

to the best of our knowledge, is the first contact-free HH technique

monitoring with a potential to work inside healthcare facilities

without compromising privacy.

RF Gesture Recognition Gesture recognition is a very ac-

tive research field and many works applied RF-sensing to gesture

recognition applications. These include WiFi-based [4, 25, 32, 37],

RFID [41, 42, 45] and mmWave radar [10, 33, 39] systems. Despite

the extensive treatment of the topic, little attention was paid to rec-

ognizing naturally-performed gestures that do not include pauses.

This limitation continues to have its negative impact on the existing

RF sensing applications such as sign language recognition [22]. An-

other example is WiMu [37] that successfully manages to recognize

simultaneous multi-user gestures but requires user to take brief

pauses before and after the gestures to enable segmentation [37].

We presented our attempt to address this problem by introducing

a model that can learn on unsegmented contiguously performed

gestures. We hope the results of this work spark interest of research

community, and in the near future, other follow-up works can

utilize unsegmented RF data streams for other sensing applications.

CTC-basedGestureRecognitionAnumber of researchworks [27,

43] employed CTC-based architecture for gesture recognition appli-

cations. Most notable of which is Nvidia vision-based system [27]

that fuses depth, RGB and IR camera measurements to recognize

a driver’s hand gestures. In these approaches, gestures are seg-

mentable (i.e., pauses exist between gestures) and training samples

are pre-segmented to contain data for one gesture only and frames

for “no gesture” [27]. The role of CTC is to fine tune the predictions

by locating the gesture nucleus. In our case, due to the difficulty

of pre-segmenting back-to-back gestures especially from RF mea-

surements, we proposed training on unsegmented gesture sequence

(e.g, a number of gestures within a training segment). Such critical

difference raises a challenge when training on long segments and

was addressed by a novel order-preserving augmentation technique

that regularizes the training process and, hence, enables learning

with “weak” (less) supervision.

7 DISCUSSION AND FUTUREWORK

There is a big room for improving the current implementation of

RFWash. In our design, we focused mainly on the key technical

challenge of recognizing back-to-back gestures. The following are

the key areas for improvement:

HH tracking inside wards: requiring the user to be stationary

while facing the radar is a limitation of the current system. The

prototype in its current state, however, can be employed in auto-

mated in-ward technique compliance check scenarios, i.e., a once

per daily HH rub technique compliance check. Currently we are

extending RFWash in two directions. First, tracking gestures of

walking users/HCWs. This would require separating micro Doppler

motions (i.e. hands) from the bulk Doppler (i.e. torso) using Doppler

decomposition techniques [26, 30]. Second, collecting data inside

wards. Limited by the ethical clearance of this research, RF data

was collected only from general public in our campus. Clinicians

may perform hand rub techniques at faster pace and interference in

healthcare environment can be more challenging. Using a network

of sensors in this case be investigated [12].

Accountability (HCW identification): Gesture motions pat-

tern has been shown to be unique identifier of user [32]. This can

complement RFwash and associate HH compliance with individ-

ual subjects. Identification can be done using a subsequent model

trained to infer subject from predicted gesture. Following the archi-

tecture of [32], our preliminary results show that we can identify

the subject who performed 𝐺2 with an average accuracy of 94.12%.

HH tracking for general public:Maintaining good HH is one

of the most effective ways to slow the spread of COVID-19. The

cost of IWR1443 mmWave sensor in our prototype is less than USD

14 when bought in bulk (e.g., 1,000 units) and the form factor is

small (see Figure 1). We are considering to deploy RFWash in local

schools to help children maintain good HH during the challenging

time of COVID-19 pandemic and beyond.

8 CONCLUSION

We introduced RFWash; an RF-based system for contact-free moni-

toring of healthcare workers performing Hand Hygiene techniques.

The novelty of the work is two-fold. First, we fill the gap in HH tech-

nique monitoring research by introducing the first device-free sys-

tem that is privacy preserving. Second, we introduce a deep model

capable of recognizing back-to-back gestures that are not trivially

separable. RFWash was implemented using embedded mmWave

sensor and evaluated in a real-world environment. The promising

results encourage us to further expand this work to collecting data

at a larger scale in clinical facilities.
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