This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/J10T.2023.3349378

WiFi2Radar: Orientation Independent Single
Receiver WiF1 Sensing via WiF1 to Radar
Translation

Isura Nirmal,

Member, IEEE, Abdelwahed Khamis, Member, IEEE, Mahbub Hassan, Senior Member, IEEE, Wen

Hu, Senior Member, IEEE, Rui Li, and Avinash Kalyanaraman

60.00 175
1.25
36,00
5 % 075
> 12.00 E s
g Z
[ S .
3 -12.00 % 0.25
(]
o 2 075
- .36.00
125
-60.00 -1.75
0.00 030 060 090 120 000 030 060
Time(s) Time(s)
(a) WiFi CSI Spectrogram

(b) Radar Doppler Spectrogram

Velocity (m/s)

1.75 1
1.25 o8
0.75
0.25 06
-0.25 0.4
-0.75
0.2
-1.25
-1.75 0

0.00 0.30 0.60 0.90 120
Time(s)

0.90

1.20

(c) Spectrogram converted from (a)
using our deep learning translator

Fig. 1: Converting noisy WiFi CSI to high-precision radar Doppler using deep learning. (a) WiFi CSI spectrogram of a Leg
Swing activity performed by a subject at 20° orientation to a single WiFi receiver; (b) High-precision Doppler spectrogram
produced by a TI IWR1443 [1] mmWave radar while observing the same activity simultaneously from the front; (c) Spectrogram
converted from (a) using our deep learning translator trained with both WiFi and the corresponding radar data of the same
activity. (b) and (c) have a structural similarity index measure (SSIM) of 0.84.

Abstract—Recent research has demonstrated the huge po-
tential of WiFi for contactless sensing of human activities.
Unfortunately, such sensing is highly sensitive to the relative
orientation between the user and the WiFi receivers. To overcome
this problem, existing solutions deploy multiple WiFi receivers
at precise positions to capture orientation-independent view of
the human activity. Orientation independent single receiver WiFi
sensing is still considered an open problem. In this paper, we
propose a deep neural network architecture that uses radar data
during training to learn high-precision Doppler features of hu-
man activities from the noisy channel states observed by a single
WiFi receiver. Once trained with radars, the network can be used
to detect human activities at any arbitrary orientations based
only on WiFi signals. Using extensive experiments with millimeter
wave radars, we demonstrate that the proposed approach, called
WiFi2Radar in this paper, significantly outperforms state-of-the-
art for detecting human activities in untrained orientations using
only a single WiFi receiver. Our results show that WiFi2Radar
can detect orientation-independent human activities with up to
91% accuracy, which outperforms the state-of-the-art by 19%.
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I. INTRODUCTION

Wireless modalities (i.e., WiFi, mmWave, RFID, and
UWB [2]) for human sensing [3] have attracted significant
interest. Recent research demonstrates substantial potential
for WiFi-based contactless sensing of human activities [4],
[5]. WiFi’s pervasive deployment distinguishes it from other
modalities. Additionally, it underscores the sensitivity of such
sensing to the relative orientation between the human and the
WiFi receiver [6], [7].

There are several existing approaches to address the ori-
entation or other “domain” issues of WiFi sensing, where a
domain refers to heterogeneity in subjects, orientations, rooms,
or any other variables that significantly impact WiFi signals.
Widar 3.0 [8] is a proposed approach that fuses signals from
multiple WiFi receivers installed at precise locations around
the subject to obtain an orientation-independent feature of the
human activity, called BVP (Body Velocity Profile). It was
shown that deep neural networks trained with BVP were used
to achieve a remarkable accuracy of 90% for orientation-
independent gesture recognition when 5 WiFi receivers are
used. While Widar 3.0 is clearly a step forward in improving
the accuracy of WiFi sensing, the requirement of multiple
receivers in a specific geometry is an impediment to pervasive
WiFi sensing. Authors of [7] demonstrated that it is possible
to design special gestures that are less sensitive to orientations,
but such an approach would not work for detecting many
natural and popular activities. Finally, the work in Environment
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Independent (EI) [9] has demonstrated that adversarial deep
learning can improve WiFi sensing accuracy across different
environments by forcing the network to extract features that
are not dependent on the environment. While adversarial
learning appears to be a useful tool to improve orientation-
independent WiFi sensing with a single receiver, its accuracy
was found to be limited to around 80%. In addition, the design
in [9] was found to be useful when some unlabeled data from
the target environment was fed to the network, which makes
its performance uncertain for pervasive use cases where the
trained network may be expected to work in entirely unseen
environments. Orientation independent single receiver WiFi
sensing, therefore, remains an open challenge.

This paper proposes and explores the feasibility of deep
learning to translate WiFi observations of human activities to
their corresponding observations from an FMCW (Frequency
Modulated Continuous Wave) radar. The motivation here is
many-fold. First, radars use an ultra-wide bandwidth of 4
GHz [10] compared to only 20 MHz in typical WiFi use
scenarios. This enables radars to observe human movements
at much finer resolutions, improving their ability to recognise
a specific activity despite environmental noise accurately.
Second, radars use tailor-made wireless waves, such as sharp
chirps in FMCW radars [10], explicitly designed to sense
objects. In contrast, WiFi uses OFDM (Orthogonal Frequency-
Division Multiplexing) modulation, optimised for communi-
cation but not for sensing. Third, radars use synchronised
transmitting and receiving antennas within the same device,
making it possible to accurately measure the time-of-flight of
the signal reflected from the target.

To realise our concept, we design a multi-component neu-
ral network architecture that we call WiFi2Radar. A key
component of our architecture is a translator that is trained
to translate WiFi observations of human activities to their
corresponding radar observations. Figure 1 shows an example
output of our WiFi2Radar implementation in converting
noisy WiFi CSI to clearer radar images. As WiFi observations
are affected by orientations, the translator faces the challenge
of producing a radar image that can be used by a classifier
to detect human activities accurately without being influenced
by orientations. We addressed this challenge by designing an
adversarial component, which seeks to learn radar features that
are both discriminative with respect to activities but agnostic
to the orientation. A key advantage of our adversarial design
against that of EI [9] is that it does not require any data from
the target domain during training, making it truly orientation
independent for pervasive deployment.

To demonstrate the feasibility of WiFi2Radar, we simul-
taneously collect data from a single transmitter-receiver pair
of commodity WiFi devices as well as from a commercial
millimeter wave radar for 3-6 human activities repeated many
thousands of times from 12 different orientations in three
different environments. Our results show that WiFi2Radar
can detect human activities from unseen orientations with up to
91% accuracy, which outperforms EI [9] by 19%. Given that
our deep learning architecture is similar to that of the EI with
the exception of WiFi-to-Radar translation, these experimental
results clearly demonstrate the feasibility and benefits of such

translations.

Our contributions are three-fold:

o We present the first attempt of using radar as a training
aid to learn high-precision motion features from a single
pair of commodity WiFi devices. We demonstrate its fea-
sibility through supervised machine learning that builds
on the principles of deep learning based translation.

e We design and implement a novel neural network ar-
chitecture that integrates a WiFi2Radar translation
component with an activity classifier within an adversar-
ial domain adaptation framework. The proposed design
performs significantly better than the baseline activity
recognition adversarial models while removing their in-
herent limitations, namely the reliance on multiple WiFi
receivers and target domain data availability.

o We validate and quantify the efficacy of the proposed
deep learning architecture on a real activity recognition
dataset. Our results show 19% improvement compared
to the state-of-the-art approach [9]. Our evaluation also
shows that the model has a negligible performance de-
crease (less than 4%) for unseen subjects and environ-
ments.

The rest of the paper is structured as follows. We present
the methodology and system model in Section II followed by
its evaluation in Section III. We review the state-of-the-art
in Section IV. In Section V, we discuss the possible future
directions before concluding the paper in Section VI.

II. METHODOLOGY AND SYSTEM MODEL

This section discusses the Doppler acquisition of WiFi
and current challenges followed by preprocessing steps to
transform Doppler features into a format desirable for Deep
learning. We then discuss our System Model of WiFi2Radar
for an application scenario (i.e., Activity Recognition). Finally,
we evaluate the specific architecture for the WiFi2Radar to
justify the design choice of an adversarial based architecture
for an activity recognition use case.

A. WiFi Doppler Preliminaries

Doppler frequency shift [11] measures the negative or
positive shift of the observed frequency due to the relative
motions of the source or the target as shown in Figure 2.
This is observed in both sound waves and electromagnetic
waves. Specifically, the amount of frequency change Af for
electromagnetic waves can be calculated as:

Af=+vf/c, (D

where f is the carrier frequency, c¢ is the speed of light
and v is the velocity of the motions. However, this type of
straightforward estimation of Doppler is infeasible in WiFi
based sensing due to the following reasons.

First, there exists no means for quantifying the rate of
change in path length due to the well known random phase
error issue [12], which is a limitation that hinders commodity
WiFi from directly capturing the Doppler shift [13].
Previous efforts resorted to indirect estimation means by
evading the noisy phase. Examples include, employing custom
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WiFi hardware that can capture accurate phase [14] or using
alternative amplitude measurements [13] or phase differences
across antennas [15] whose values are a “function” of the
speed of path length change. However, these systems require
specialised hardware. Despite these efforts, precise Doppler
acquisition from unmodified WiFi is mostly unexplored and
yet to be realised.

Second, the bi-static nature of WiFi (i.e. non co-located
sender and receiver) makes the path length changes conditional
on the motion’s position and orientation with respect to the
transmitter and the receiver. Thus a specific motion will yield
variant Doppler patterns at the receiver depending on the
configuration [16] which complicates the learning task in
activity and gesture recognition applications. One approach
that was followed for unifying Doppler patterns is Invariant
Doppler Acquisition. For example, Widar 3.0 [8] uses variant
Doppler profiles observed at multiple receivers to approximate
the invariant Doppler (called Body Velocity Profile or BVP
[8]) that would have been observed at the user’s location
(body coordinates). However, this necessitates predefined mul-
tiple WiFi receiver spatial deployment considerations and the
knowledge of device locations. Another line of research shifts
the burden to the machine learning side through models that
align the patterns internally in the embedding space. Here,
adversarial domain adaptation techniques [9] have attracted a
lot of attention. Yet, they assume access to target domain data
during training, in addition to the requirements of multiple
WiFi receivers. It is generally desirable to have a “sealed”
model ready to operate in a new context without re-training.
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Fig. 2: Velocity components and Doppler Effect in WiFi
sensing

Figure 2 further shows a typical WiFi setup with a 7}
and R, pair, where the area of interest can be considered as
the foci of an ellipse and a human subject performs motions
of interest (e.g., activities) on the ellipse. Here, the reflected
signal path change is caused by the radial velocity of the
human motions and contains some information on human
motion velocities [16]. As mentioned earlier, the Doppler
information generated from commodity WiFi devices lacks the
full Doppler information, the performance when identifying
the specific human motions has its limitation when inferring
motions with direction as multiple human velocities generate
the same radial velocity components.

In the literature, this limitation is addressed by adding
multiple receivers in specific configurations to capture WiFi
signals and concatenating the Doppler spectrograms [8], [15].

Chen et al. [17] introduced a novel deep learning-based
pipeline aimed at enhancing low-light photographs marred by
noise, successfully restoring them to their original clarity. This
advancement effectively addresses the issue of noise in images
produced by cost-effective CMOS sensors.

Inspired by Chen et al. [17] and considering signal mod-
elling, the pertinent Doppler information derived from WiFi
signals becomes obscured and intertwined with various other
Doppler components that may not contribute to the gesture
recognition task. These unwanted components can be seen
as noise. However, our ground truth Doppler data boasts
superior Doppler acquisition capabilities (due to synchronised
transceivers and higher bandwidth), capturing precise Doppler
information relevant to the intended gesture. Therefore, we
propose a similar learning-based approach for the restoration
of noisy and incomplete Doppler information extracted from
WiFi signals, utilising more precise Doppler information.

After the successful acquisition of high-precision Doppler
spectrogram information, we extend our work by proposing
a generalised human-sensing system via Adversarial Domain
Adaptation that can perform well in both in-domain (source
domain or orientation) and cross-domain (target domain or
orientation) setups, requiring zero target domain orientation
data.

B. CSI Preliminaries

Computer vision-based deep learning workflow tech-
niques [17] inspire the proposed approach. In this subsection,
we introduce a signal processing pipeline to extract Doppler
features from raw WiFi data and generate spectrograms that
can be used as input to the deep learning model.

The WiFi radio signal is continuously affected by the motion
in the background. The CSI (Channel State Information)
measurements contain the CFR (Channel Frequency Response)
values of the wireless communication channels. We define
X(f,t) and Y(f,t) as the transmitted and received signal,
respectively, and the following Eq. (2) shows how the two
signals are related.

Y(f,t) = H(f,t) x X(f,1), 2

where each H(f,t) entry is the complex CFR value. In
the IEEE 802.11n standard, CSI is obtained for each of the
subcarriers used in OFDM (Orthogonal Frequency Division
Multiplexing) subcarriers. The dimensions of CSI measure-
ments are:

m X Npg X Npg, 3)

where m is the number of OFDM subcarriers, and N, and
Np, are the numbers of transmitting and receiving antennas
respectively. Since CSI is measured during packet reception,
this adds a time axis to the CSI dimension and finally CSI
is represented as a time series. Henceforth, we refer CSI
stream with x-axis being CSI data collection time period which
we discuss in the coming section. The CSI streams can be
extracted from COTS devices such as Intel 5300 NIC [18],
which is used in this paper. Specifically, we choose a 5 GHz
WiFi band with 40 MHz bandwidth in 802.11n. Intel 5300
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NIC measures the CSI in 30 subcarriers. Since N7, = 1 and
Npg, = 3. In our setup, we have 90 CSI streams altogether.

C. From CSI Measurement to Doppler Spectrogram

Raw CSI streams from COTS WiFi radio are noisy. There-
fore, we apply an extensive preprocessing and signal pro-
cessing pipeline to extract Doppler information from the CSI
streams. Specifically, we choose a major part of the signal
processing pipeline proposed in WiDance [15] to generate
Doppler spectrograms. We note that WiDance’s signal process-
ing pipeline makes use of the phase information to generate
Doppler information preserving its direction (positive direction
as towards and negative direction as backward to the receiver).
We summarise the preprocessing steps from WiDance as
follows.

CSI (H(f,t)) can be modelled as the superimposition of
the frequency response of the multiple propagation paths in
the radio environment. We define ay(t) and 74(t) as the
complex attenuation factor and propagation delay for the
path k respectively, and there are K number of significant
propagation paths. Let e/<(/"!) be the timing alignment offset,
sampling frequency offset, and carrier frequency offset due to
the lack of synchronisation between transceivers and hardware
imperfections. Then, we can derive H(f,t) as follows:

K
H(f,1) = (3 ap(t)e i2mIm0) efel0: @
k=1

Frequency offset causes the random phase shifts between
measured CSI and needs to be sanitised before the signal
processing pipeline. It’s assumed that frequency offsets are
equal in all the antennas in the same NIC card, the conjugate
multiplication of CSI measurements between two antennas of
the same NIC will eliminate the random phase offsets. We
select two antennas (out of three available in the Intel 5300)
in the receiver (60 CSI streams) to perform the conjugate
multiplication. Then the variance of the CSI amplitudes of
all the antennas are compared and the two with the highest
variance are selected.

The resulting data structure after the conjugate multiplica-
tion is then filtered out with a bandpass filter (2 - 60 Hz) to re-
move the impulses and burst noises caused by the environment.
Additionally, the filtering will remove the potential noise from
the product of antennas dynamic responses (“Cross Terms” of
Eq(6) in [15]). Principle Component Analysis (PCA) [19] is
applied to further de-noise and reduce the dimensionality after
the above step. The first principle component is selected as it
contains the major and consistent power variations induced by
human motions.

Finally, STFT (Short Time Fourier Transform) [20] is
applied to the first principle component to generate a time-
frequency spectrogram. Figure 1(a) shows a spectrogram gen-
erated by the pipeline outlined above for leg swing motion.
This is 1D matrix (single channel) where x-axis represents
the 1 sec of CSI data captured during the data collection time
period after applying a segmentation algorithm to extract start-
end of the activity. Here, we use 121 frequency bins (-60 to

60 Hz) to capture frequencies and the colours represent the
energy in dBs (normalised to 0-1 range) in y-axis.

Figure 15 in the appendix provides an illustration of the
flowchart representing the process.

D. System Model

Figure 3 illustrates the proposed adversarial based neural
network architecture of WiFi2Radar, integrated with an
application (i.e., activity recognition). Here, we use a U-Net
neural network model as the WiFi2Radar Translator to
improve the quality of the Doppler information generated by a
COTS WiFi receiver. Furthermore, a domain (i.e., orientation)
discriminator is introduced to extract orientation invariant
Doppler information from the WiFi measurements. Finally, the
U-Net translation and domain discrimination components in
the proposed architecture seamlessly integrate with an example
application (i.e., human activity recognition) so that our U-Net
feature extractor can retain the features that are important for
the application.

In the following sections, we will discuss each component
in detail where we specifically evaluate the U-Net based
WiFi2Radar Translator Module to validate WiFi2Radar
translation is possible and motivate the application. In Section
III, we further discuss WiFi2Radar’s design choices.

E. Deep Learning Architecture

As discussed earlier, [17] proposed to use a U-Net [21]
style model to denoise and enhance the quality of low-light
images. During such low-light conditions, the number of
photons is so small that the Signal to Noise Ratio (SNR)
of an image becomes too low to be visible. Similarly, the
SNR of the Doppler spectrograms produced by the WiFi
CSI measurements is very low. Therefore, we aim to use a
similar U-Net model to improve the quality of the Doppler
spectrograms.

a) U-Net as WiFi2Radar Translator: A U-Net [21] is
fundamentally an autoencoder-type neural network, featuring
a paired encoder (contracting path) and decoder (expansive
path). The inherent symmetry between these paths gives rise to
its distinctive U-shaped architecture. In our U-Net model, the
contracting path consists of multiple blocks, each comprising
two convolutional neural network (CNN) layers, accompanied
by a Rectified Linear Unit (ReLU) activation function and
subsequently a Max Pooling layer. A consistent dropout rate of
0.1 is applied across all blocks, contributing to regularisation.
The contracting path has a depth of 5 blocks.

The bottleneck block in our U-Net model consists of two
CNN layers. A Block in the expansive path contains two CNN
layers followed by a transpose convolution layer. The depth
is the same as that of the contracting path (i.e., five blocks).
More importantly, the corresponding blocks in contracting and
expansive paths have cross-connections (i.e., copy and crop)
that share the learnt parameters. The dimensions of the input
and output of our U-Net model are identical, i.e., 512 x 512
resolution images (i.e., Doppler spectrograms)

Our U-Net model-based CSI to precise Doppler translator
takes a CSI spectrogram image produced by WiFi as the input
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Fig. 3: The proposed deep learning architecture, which features a WiFi2Radar translator, an orientation discriminator to
reduce orientation-dependence, and an application specific model (i.e., human activity classifier). These three components are
seamlessly integrated by combining their respective loss functions (i.e., £, L4 and L,) together during each learning iteration.
Millimeter wave radar data is used only during (a) training , while (b) inference is done based on WiFi signal alone.

and a precise reference Doppler spectrogram as the output
during the training time. The translated CSI spectrogram will
be used as the input (features) for the other two components
in the proposed architecture.

Push & Pull

A

Leg Swing §&

Swipe

Fig. 4: Samples of U-Net performance: (a) WiFi CSI spec-
trograms of different activities as input to the U-Net (b) cor-
responding mmWave radar spectrograms (c) U-Net translated
spectrograms

Performance of the U-Net translator: To evaluate the
performance of the U-Net translator, we have used our primary
dataset consisting of three activities, Push & Pull, Leg Swing
back and forth, and Swipe, collected from three different
environments involving two subjects. We use 70% of the data
to train the U-Net model and the remaining 30% for testing.
Figure 4 shows some samples of generated spectrograms using
a trained U-Net model. Here, the rows represent different
activities, and the columns represent the spectrograms gen-
erated by WiFi, ground truth and the proposed U-Net model,
respectively. The figure shows that the spectrograms produced
by the WiFi CSI (the first column in the figure) directly are

indeed very noisy (i.e., low SNR) similar to the images in low
light conditions in [17]. This is the direct result of CSI after the
noise reduction techniques we discussed in Section II-C. But
those (the third column in the figure) produced by the U-Net
component of the proposed architecture in Figure 3 are smooth
and similar to the ground truth (the second column in the
figure). We have also measured the average similarity between
ground truth and generated spectrograms by the U-Net with
the Structural Similarity Index (SSIM) [22] (see Section III for
more details). Our results show that the average performance
of the proposed U-Net model in all test spectrograms is 0.87
(standard deviation or std: 0.13), 0.88 (std: 0.35) and 0.77 (std:
0.36) for the three different activities, respectively, which are
significantly better than those of WiFi spectrograms, e.g., 0.02
(std: 0.007), 0.05 (std: 0.08), and 0.03 (std: 0.09) respectively.

b) Performance of U-Net with unseen orientations: We
continued our experiment by translating the WiFi spectrograms
of an unseen orientation during the training time. Unsurpris-
ingly, this resulted in a drastic drop of SSIM performance of
0.19 (std: 0.06), 0.23 (std: 0.01) and 0.15 (std: 0.05) for the
three different activities respectively. This observation had led
us to remedy the performance of U-Net as discussed in next
sections.

c) Domain  Discriminator:  Orientation  Invariant
Doppler: As previously mentioned, Doppler measurements
exhibit orientation dependence, with receivers in different
orientations yielding distinct Doppler frequency measurements
for the same motion due to the directional nature of speed
and motion. Consequently, the U-Net component introduced
earlier does not inherently produce orientation-independent
Doppler measurements. Training the U-Net with observations
from each orientation would be labor-intensive. To address
this, our architecture incorporates domain adaptation into the
U-Net component, inspired by techniques outlined in [23].
Notably, our model deviates from [23] by eliminating the
need for unlabeled data from target (“unseen”) domains,
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enhancing user-friendliness. This capability is facilitated by
the Doppler information translation facilitated by the U-Net
component.

To achieve orientation-invariant Doppler extraction, we in-
troduce a deep learning component to the earlier U-Net, tasked
with classifying the specific orientation (i.e., degrees relative
to the reference direction) of the performed motion. Since our
objective is not to retain features distinguishing orientations,
we seek to maximise incorrect orientation classifications.
This goal is realised through the incorporation of a domain
discriminator, following the design proposed in [23]. The
domain discriminator component includes a fully connected
layer with a subsequent softmax activation function. The input
for the domain discriminator comprises concatenated features
from translated spectrograms and predicted activity labels.
During training, a Gradient Reversal Layer (GRL) [23] is
employed in the backward pass, enforcing maximisation of
the domain discrimination loss.

d) Application-Specific Component: Activity Classifier:

The previously established domain (orientation) invariant
Doppler features form a robust foundation for various WiFi-
based radio sensing applications, notably human activity
recognition. A common approach involves a sequential setup,
incorporating an additional neural network classifier (e.g.,
activity classifier) that utilises the orientation-invariant precise
Doppler spectrogram as input to yield activity classifications.
However, this straightforward approach may inadvertently lead
to the loss of application-specific features crucial for activity
recognition during Doppler spectrogram generation. To ad-
dress this, our architecture integrates the activity recognition
component directly, as illustrated in Figure 3.

Our activity classifier adopts a hybrid architecture, com-
bining Convolutional (4 layers) and Gated Recurrent Unit
(GRU) layers (2 layers) to extract both spatial and temporal
features from the translated Doppler spectrograms for activity
classification. A dropout layer with a 0.4 dropout rate is
strategically placed between the 3rd and 4th Convolutional
layer, as well as after the GRU layers. The default activation
function for the neural layers in the classifier is the Rectified
Linear Unit (ReLU) [24]. Lastly, a fully connected layer
precedes the generation of activity probabilities through the
Softmax activation function [24].

Our results, discussed in Section III, demonstrate that our
proposed approach effectively preserves application-specific
features, outperforming the naive (sequential) approach with
a notable increase in activity classification accuracy (80%
vs. 67%). Notably, the Signal-to-Noise Ratio (SSIM) of the
spectrograms produced by our approach (0.42) is lower than
that of the naive approach (0.77). This discrepancy underscores
that our proposed approach sacrifices Doppler spectrogram
quality to enhance application accuracy by retaining essential
features while discarding some elements critical for spectro-
gram quality.

FE. Model Constraints

Figure 3 shows that three different constraints (i.e., £; , Lq4
and L,) are introduced in our model to enforce the goals of

different components discussed earlier. In this section, we will
define them formally.
Specification, the translation loss (L;) is a binary cross-
entropy:
N

LS (yilog(@i) + (1 - i) log(1 — ), (5)
=1

‘Ct:_N‘

where ¢ and y represent the pixel values in the predicted
Doppler spectrogram produced by the U-Net component in
our architecture and those in the ground truth spectrograms
respectively. N is the number of spectrograms. We normalise
the values in y and ¢ to a range between [0-1] during the
preprocessing stages by following [25].

The domain (orientation) classification (discrimination) loss
(Lgq) is a categorical cross-entropy function:

| NoM
Lg= N Z Z Yim IOg(yim)v (6)
i=1 m=1
where y;,, and g;,, are the predicted and ground truth ori-
entation labels respectively. M is number of orientation class
labels.
Similarly, the activity classification loss (L,) in our model
is also a categorical cross entropy function:

1 N C
Ly = 7N Z Z Yic log(gic)a (7N

i=1 c=1
where C' is the number of activity class labels. y;. and ¢;. are
the predicted and ground truth activity class labels respectively.

We note the - operation in Eq. (7) but not in Eq. (6)
because the aim of our orientation classification is to maximise
the incorrect orientations and discard those features that can
classify an orientation correctly (i.e., orientation or domain
dependent) as discussed earlier.

Finally, the overall loss function is depicted below.

L=aLly+ Lo+ N, (®)

where A is the gradient reverse layer introduced in [23], and
« and S consecutively defines the coefficients, which are
empirically set to 1. We use Adam [26] optimiser with learning
rate 1le—6 for the model training.

Appendix 13 portrays the overall process of the system
model.

III. EVALUATION

In this section, we evaluate the proposed WiFi2Radar
for human activity recognition using real subjects for unseen
orientations (domains), i.e., the orientation it is tested on is
not used in training. We benchmark WiFi2Radar against
the state-of-the-art approach, EI [9], which also uses adver-
sarial deep learning based on the [23] architecture but without
the WiFi to radar translation. Because EI was designed with
specific algorithms to take advantage of any unlabelled data
that may be available from the target domain, we employ two
different benchmarks for it. The first EI benchmark assumes
10% unlabelled data from the target domain, while the second
assumes truly unseen domain, i.e., 0% data from the target
orientation. The second EI benchmark is equivalent to our
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Fig. 5: Data collection environments, experiment layout, and the activity set considered in the evaluations.

proposed WiFi2Radar approach, which also does not use
any data from the target domain. EI [9] follows similar
preprocessing pipeline as WiF i2Radar where the Frequency
Domain features are generated from the CSI data series as
a input to the deep model. We do aware that the modern
mmwave based sensing solutions including Pantomime [27],
M-gesture [28] where the mmwave being the main sensing
modality and supporting up to 21 gestures. WiFi2Radar
uses mmwave as a training aid only and despite the popularity
of the mmwave radars, still the commercial products are not
available in the consumer electronics and not deployed widely
compared to WiFi. Furthermore, contemporary state-of-the-
art techniques such as RF-net [29] take a different approach
by circumventing signal translation methods, with a primary
focus on reducing data labelling requirements and adaptability
to diverse environments. While this approach complements
our work, given that RF data collection can be resource-
intensive and model-dependent, our research predominantly
relies on WiFi-to-Radar translation. This choice motivated us

to benchmark WiFi2Radar against a prominent WiFi-based
gesture sensing study featured in the existing literature.
For WiFi2Radar, we also explore its,

o Generalisation capability to unseen subjects and radio
environments.

o Robustness against the WiFi Tx-Rx deployment layout.

o Performance with different deep translation networks,
namely a generic autoencoder and U-net.

Finally, we evaluate the scenario where the activity classifier
is both trained and tested with radar data, which provided an
accuracy of 97% and could be considered as the ‘upper limit’
for WiFi2Radar translation approach.

A. Experimental Setup and Data Collection

Figure 5b illustrates the dataset we collected firsthand.
During our experimental setup, we conducted data collection
concurrently by capturing both WiFi and radar data while the
subjects were engaged in various activities across 12 different
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Fig. 6: Variation of WiFi Doppler with the orientation

orientations. For the primary data collection, we positioned
two WiFi-enabled laptops (one serving as the WiFi transmitter
and the other as the receiver) at a distance of 2 meters from
each other. Between these laptops, we mounted a TI IWR1443
millimeter-wave FMCW (Frequency Modulated Carrier Wave)
radar, which operated in the 77-81GHz frequency band.

Both laptops were equipped with Intel 5300 wireless Net-
work Interface Cards (NICs) and were configured to operate
in the IEEE 802.11n 5 GHz band, specifically channel 100,
with a 5,500 MHz centre frequency and 40 MHz bandwidth.
While the transmitter laptop (Tx) employed a single antenna,
the receiver laptop (Rx) used three antennas. The Tx laptop
transmitted data packets at a rate of 200 packets per second,
and the Rx laptop was configured with a CSI capture tool [18]
to collect Channel State Information (CSI) data from the
received packets. We ensured synchronisation between the
Rx laptop and the mmWave radar using the Network Time
Protocol (NTP).

The subjects performed activities from 12 different loca-
tions, so the orientations of adjacent locations from the subject
to the middle point of the two laptops were separated by 20°
. Data collection points were located 1.5m to 2m away from
the ground truth collection device (i.e., mmwave radar). The
radar was always facing the subject to capture the human
motion within its field of view. Although subject’s orientaiton
is always perpendicular to the ground truth collection device’s
boresight direction, the angle between the WiFi receiver de-
vice, and the subjects’ orientation () is always different which
introduces different radial velocities when the motion occurs.
Figure 6 further visualises the variation of the doppler when
Leg Swing activity is performed in selected orientation.

Therefore, the distance between a subject and one of the
WiFi transceivers was between 0.5m to 2.5m. The subjects
performed the same activity (among Hand Push & Pull (P&P),
Leg Swing back and forth (LS), Hand Swipe (HS), Clap, Draw
a Circle vertically and Stand & Sit (S&S) ) repeatedly for up

to 5 minutes in one session with an approximately 2-second
interval between each repetition. We have selected the set of
gestures by first analysing the state-of-the-art [8], [9], [27],
[30] and aligning them with following consideration.

One of the reason being we specifically selected the set
of gestures to test was that in smart home applications like
person interacting with an appliance such as TV or a smart
home automation device. Smart devices are inherently built
in WiFi sensors therefore can be reused for sensing as well.
In these use cases, the user is usually facing towards to the
appliance in order to see the response from the device but
doesn’t usually have to be in the boresight angle and in
a specific distance as well. However, we have noticed the
possible orientation/position combinations are usually circular
to the appliance. Smart contactless screens are also popular
even in public places as it’s easy to interact and safe in
pandemic situations. the screen can be activated when a person
approaches and swipe ,draw circle and clap would interact with
it.

Second reason is that the gestures should cover wide
range body movements. For example, Push and Pull using
the dominant hand is a regular activity with horizontal arm
movement, while Swipe is a vertical arm movement. We
incorporated Leg moving back and forth to cover the lower
body movements. Repeated Leg moving back and forth may be
considered as walking. Additionally, Clap, Draw a Circle and
Sit/Stand activities are performed in one of our environments
(R3) to incorporate duel hand motion, circular motion and
full-body motion types. Thus, we believe the choice of our
activity covers a wide variety of body motions that a human
perform in front of a smart appliances. Please note that we
do use mmwave sensor for ground truth collection only and
used for training our deep model.We recruited four subjects
with varying physical attributes, both female and male with
the average weight of 62.5 kg, the average height of 167.8cm
and the average age of 30.5 years.!

To obtain Doppler ground truth information to train our
model, we leveraged a commercially available mmWave
FMCW [31](Frequency Modulated Carrier Wave) radar [1]
operating on 77 GHz to 80 GHz frequency. Every 125 ms, the
FMCW radar transmitted one frame containing radio chirps
over a wide bandwidth of 4 GHz, which gives the radar a
resolution of 3.75 cm, i.e., it can differentiate reflections that
are bounced back from different parts of the human body
separated by as little as 3.75cm. Therefore, the radar was able
to produce a 1D energy vector (the closer the distance, the
higher the energy) of the reflectors, which is called range-
Fast Fourier Transform (range-FFT). By leveraging the phase
difference of the received neighbouring chirps, we computed
the radial velocity of the reflector in a specific distance. By
stacking the range-FFTs of multiple chirps, we can calculate
the fine-grain Doppler information of the human body motion
via a second FFT across different ranges (i.e., the columns
in the stacked range vectors or FFTs). The output of the
second FFT was a 2D Range Doppler Matrix (RDM). A row-
wise averaging is performed on RDMs to extract the Doppler

"Human data collection is approved by UNSW Human Ethics HC17823.
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information that matches the range-less Doppler captured by
WiFi only. Thus, at each time step, an RDM is collapsed into
a 1D Doppler array. Finally, we stitched the consecutive 1D
Doppler vectors to obtain a Doppler matrix (2D spectrogram),
which can be used as the input of WiFi2Radar neural
network model using the method in Section II-C during train-
ing. Figure 1(b) illustrates an 2D Range-Doppler Spectrogram
when the range collapse is applied (thus, the x-axis becomes
the time dimension). We note that in the FMCW literature and
products, values 2D Range-Doppler matrix is often reported in
meters and meters/sec since the Doppler has the dimensions
of velocity. Therefore, we follow the same terminology when
presenting the ground truth with the units of measurements
in this paper. The Figure 15 in the appendix presents the
flowchart depicting the process.

We collect data from three different radio environments or
rooms, open office area (R1), seminar room (R2), and com-
puter lab (R3), as shown in Figure 5a.While the data collection
setup and geometry remain the same for all environments, the
rooms themselves are different in terms of their size, layouts,
furniture, and background activities. Daytime data collection
in R1 continued while other office occupants were present
in the open space, which meant increased WiFi usage in the
area as well as uncontrolled background movement of other
people in the background. In contrast, no human was present
in the other two rooms but their sizes were smaller than R1. To
capture realistic patterns of changing ambient conditions, we
spread the data collection over several days and different time
slots within the day, i.e., work hours (9:00-18:00) vs. after
hours (18:00- 24:00). Additionally, we did not exhaust the
data collection for all orientations in one day but rather split
it over 3-5 days. Moreover, a followup data collection round
specific to unseen subjects (Sec.IlI-D) and varying transceiver
locations (Sec.III-E) was performed 3 months later.”.

One subject performed all 6 activities in R3, but only three
activities, push-pull, leg-swing, and swipe, in the other two
rooms. A second subject performed three activities, push-
pull, leg-swing, and swipe, only in R1. For each combination
of orientation and activity, a subject repeated the activity
for 5 minutes within one session with approximately 2-sec
gap between the repetitions. Each subject completed two 5-
minute sessions, thus 10 minutes of data were collected from
each subject for a given orientation-activity combination in
each room. We further incorporated the testing data from
two extra subjects, who performed three activities (i.e., push-
pull,leg-swing,and swipe) in 2 orientations with varying WiFi
transceiver setups, i.e., Tx-Rx distance between 1m and 3m.

Therefore, our final data set contains 1,800 minutes of hu-
man motion data, which contains approximately 32.4 million
WiFi CSI samples and 1.3 million radar frames. After segmen-
tation, we collected a total of 27 041 activity spectrograms for
both WiFi and radar to be used for deep learning. 3

2During this period, other uncontrollable factors (e.g. change in
chairs/furniture locations) probably altered the original wireless environment.
This presents a more realistic domain shift that we leverage to test the
robustness of WiFi2Radar

3We plan to release the data set as a publicly available repository along
with the publication.

TABLE I: WiFi2Radar

. Performance
Architecture Accuracy  Avg.SSIM
WiFi2Radar 80.53 0.42
WiFi2Radarpre—training 67.29 0.77
WiFiQRadarNo U—Net 60.24 0.12
WiFi2Radar No Translation 58.41 N/A

B. Training and WiFi2Radar

In Section II, we have already discussed the performance of
the U-Net in achieving the precise Doppler translation from
WiFi and its limitations on working with unseen domains.
In this section, we introduce each component to U-Net with
the performance evaluation while justifying the architecture
and performance improvement. For clarity, we include the
proposed architecture we derive at the end and the ablation
architectures in Figure 7 (a). Table I summarises the accuracy
(accuracy = %) and SSIM difference between
the ground truth and translated spectrograms based on the
R1 dataset. WiFi2Radar archived 80.53% accuracy in this
experiment. We further explain the approach of the ablation
study for building WiFi2Radar as follows.

In Figure 7 (b), we streamline the training strategy into
a two-player adversarial game, wherein the translation mod-
ule undergoes pre-training in conjunction with the domain
discriminator. Subsequently, during the fine-tuning stage, the
frozen translator module’s output is utilized. This particular
investigation yielded an accuracy of 67% when subjected to
leave-one-out domain testing across 12 domains. A detailed
analysis of the visual quality of the generated mmWave
spectrograms is presented in Figure 8 (Row 1). Unfortunately,
this approach resulted in a loss of distinguishable features from
activities, leading to a decline in classification performance
from 80.53% to 67%.

The two-player pre-training stage is characterised by a
dual objective: generating orientation-invariant Doppler and
remaining unaware of subsequent classification goals. Conse-
quently, the classification task lacks features crucial for distin-
guishing between different activities, thereby contributing to
the observed reduction in classification accuracy.

While skip connections enhance the translation capabilities
of U-Net by preserving essential residual information from
the encoder, they simultaneously introduce heightened com-
putational complexity and extended training times. To better
understand this trade-off, we explore the use of conventional
autoencoders, which have proven effective in similar trans-
lation tasks [33], as an alternative to U-Net without incor-
porating skip connections between the encoder and decoder
components.

In our study using the R1 dataset, we replaced the U-
Net in WiFi2Radar with a conventional autoencoder. This
autoencoder comprises a standard 4-layer convolutional neural
network (CNN) — featuring 2 CNN layers for the encoder and
2 transposed convolutional layers for the decoder. In leave-
one-out evaluations across 12 orientations, we achieved an
average accuracy of 60.24% with the conventional autoen-
coder, absent of skip connections. As an illustrative example,
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focusing on the swipe activity, our results demonstrate that the
U-Net generates a more accurately translated image compared
to the autoencoder, as depicted in Figure 8 (Row 2).

These experiments further confirmed the pivotal role of
skip connections in realising the envisioned capabilities of
WiFi2Radar. While the incorporation of skip connections
introduces additional complexity, it is noteworthy that the
training process can be conducted offline in the cloud. As such,
the supplementary complexity due to skip connections is not
anticipated to pose a bottleneck for the widespread deployment
of WiFi2Radar.

In Figure 7 (d), we undertake an experiment where we
eliminate the translation module entirely to assess the impact
of mmWave’s contribution to our model. In this configuration,

we discard the U-Net-based translation module and instead
employ the generic Domain Adversarial Neural Network
(DANN) architecture without unlabeled data from the unseen
domain. Utilising WiFi Doppler Spectrograms as inputs along
with their corresponding labels, we aim to extract features.

Upon subjecting this model to leave-one-out domain testing
across 12 domains, we achieve an average accuracy of approx-
imately 58%. This outcome affirms that the incorporation of
mmWave not only successfully recovers Doppler information
but also enhances overall model performance.

C. Benchmarking against EI

Using the 3-activity datasets from three rooms and two sub-
jects, Figure 10 compares the performance of WiFi2Radar
against the two versions of EI, i.e., 0% (henceforth referred
to as EI-0) and 10% (EI-10) unlabelled data used from
target domain based on leave-N-out evaluation, where N
orientations are used for testing and 12 — N for training.
Note that WiFi2Radar never uses any data from the testing
domain and hence EI with 0% is a more fair benchmark for
it. As expected, we find that the accuracy of all three models
increases with the number of domains (orientations) used
in the training. However, WiFi2Radar outperforms the EI
benchmarks significantly in each configuration. For example,
when the number of domains used in the training is 11, the
average accuracy of WiFi2Radar is 91.5%, which is 18.7%
higher than E1 0% benchmark. Even with the unfair advantage
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TABLE II: WiFi2Radar vs. EI for 3 and 6 activity classes

No. of Activity classes | EI-0 | EI-10 | WiFi2Radar | Gain against EI-0
| AcC | F1 | AcC | Fl1 | ACC | FI | ACC/F1

3 (P&P, LS, Swipe) | 72843.6 | 77.740.03 | 78.6+2.3% | 812.5+0.02 | 92245.5% | 92240.06 | +19.4/+145

6 (P&LS, Swipe, 86.9+0.02 ‘ +18.7/+15.2

‘ 64.5£2.3% ‘ 71.74£0.02 ‘ 68.3£0.5 ‘ 72.940.02 ‘ 83.2+1.9 %

Clap, DC, S&S)

of 10% unlabelled target domain data given to EI, the proposed

W EI(0% target data) WiFi2Radar outperforms EI by 12.8%.
o0 | ™ EI10% target data) We.have inFroduced F1 score as another performance metric
B \WiFi2Radar for this experiment.
TP
Precision — — 1+
recision TP+ FP )
60
g Recall = —— 2 (10)
£ "~ TP+ FN
o
S 2 - (Precision - Recall)
()] . .
g 40 F1 Score = — (11)
z Precision + Recall
'_
Similar performance gains are also achieved for F1 scores
20 (Information on how we calculated the F1 scores are given in
Eq.9, Eq.10, and Eq.11). Table II shows the performance of
WiFi2Radar against the EI-0 and EI-10 also with different
levels of cardinality.

0 To further
2 3 4 5 6 7 8 9 10 11

Number of Training Domains( Orientations )

investigate the potential superiority of
WiFi2Radar over EI when scaling up the number of
activity classes, Table II presents a performance comparison
using the 3- and 6-activity datasets while 11 orientations
are used for training. As expected, accuracy experiences

Fig. 10: Accuracy comparison for WiFi2Radar vs. EL
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a decrease across all models as the number of gestures
increases. However, it is noteworthy that WiFi2Radar
maintains an approximate 18% accuracy advantage over the
EI 0% benchmark, regardless of the number of gestures.
In terms of F1 score, WiFi2Radar also sustains an
approximate 15% lead over the EI 0% benchmark, regardless
of the number of gestures.

The Sit activity is a full body movement, which we an-
ticipated a better performance than the rest of the activities
that involve parts of the body only. However, Push & Pull
activity still performs the best in the activity wise classification
because of the reflected signal path change rate is higher than
the Sit activity as we discussed in Section II-A earlier.

D. Robustness against unseen environments and subjects

Our main contribution is to produce a WiFi to Radar
Doppler feature translation-based approach before further ex-
tending it to an orientation independent activity recognition
application. Therefore, our evaluation mainly focused on ori-
entation invariant activity recognition. However, real-world
applications involve deploying the motion-sensing systems in
many different radio environments interacting with people with
various physical characteristics. In order to demonstrate that
the Doppler features used in WiFi2Radar are robust to
different radio environments and people, we further evaluated
our model’s performance with different “seen” and “unseen”
radio environments and participants.

Tables IIT and IV show the performance of WiFi2Radar
across different rooms and subjects, respectively. We used
11 orientations from two rooms for training and the 12th
orientation from the third room for testing for cross-room
experiments. Only data from a single subject (S1) for three
activities were used for these experiments.

Similarly, for cross-subject experiments, two subjects’ data
from only R1 was used to train the model, where 11 ori-
entations from one subject were used for training, and the
12th leave-out orientation is used for the testing “seen’ subject
performance. Finally, we tested the same with three different
subjects’ data using “unseen subject”. Here, we used leave-out
orientation from unseen subjects during the test time.

Tables III and IV show that the overall accuracy of
WiFi2Radar drops by approximately 3% only when tested
across different environments and subjects, despite being
trained with a small number of rooms (2 in this case) and
subjects (only one in this case). Thus, the proposed WiFi to
radar translation for human activity recognition performs well
across different orientations, and different environments and
subjects.

E. Varying Tx-Rx Distances

In real-world scenarios, WiFi transceivers are dispersed in
the deployment environment so that the distance between
them varies. With the increase of propagation distance, the
signal to noise ratio of WiFi signal degrades, thus the features
extracted from the received signals may be less distinguish-
able. Although our contribution is an orientation independent
WiFi sensing model, we further tested the robustness of

TABLE III: Cross Room Accuracy

Train Test Dataset | Seen Unseen
Datasets | (Unseen) Env. Env.
R1+R2 R3 91.6% 89.4%
R2+R3 R1 92.8% 88.5%
R1+R3 R2 91% 87.9%
Avg. \ 91.8% \ 88.6%

TABLE IV: Cross Subject Accuracy

Seen Unseen Unseen Unseen Unseen

Sub. Sub. 1 Sub. 2 Sub. 3 Sub. 4
N 92.6 % - 88.3% 89% 89.2%
S2 91.2 87.4% - 87.8% 88.5%
Avg. \ 91.9% \ 87.4% \ 88.3% \ 88.4% \ 88.9%

WiFi2Radar with different distances between a Tx and a
Rx. To this end, we conducted an experiment with different
distances between Tx-Rx to 1m, 2m and 3m in the R1
environment where subject one performed the activities. The
ground truth collection radar and subject was maintained at 1.5
m distance. Table V shows the performance of both in-dataset
and cross-dataset. For the seen dataset performances, our
model predicts the activity in a similar performance regardless
of the training dataset.

We’ve observed a slight (2%) performance decrease com-
pared to the in-dataset results, indicating our model’s resilience
to varying transmitter-receiver (Tx-Rx) distances during de-
ployment. A closer look reveals that accuracy drops more
significantly with the distance, unseen datasets, which is rea-
sonable given the reduced signal-to-noise ratio (SNR) resulting
in noisy WiFi Doppler images. This observation is consistent
with testing our 2m + 3m trained model on a closer dataset
(1m), where performance dropped by 1.5%.

Training on both near and far datasets and testing on
mid-distance data showed only a modest 0.5% performance
reduction. This result can be attributed to the wider range of
Doppler samples with varying SNR, enhancing the model’s
ability to learn meaningful representations.

F. Analysing the embeddings of the Intermediate Layers

In order to further explore how our model works, we
have used a popular method for visualising and analysing
the learned representation of the intermediate layers of the
deep model. We aim to explore the model’s learning capability
with the constraints we have introduced to train the model. As
discussed in the section, we are forcing the overall network to
predict the activity labels but penalising the domain prediction

TABLE V: Varying Tx-Rx Distances

Train Test Dataset | Seen Unseen
Datasets (Unseen) Env. Env.
1m+2m 3m 92.5% 88.6%
2m+3m Im 89.3% 87.8%
Im+3m 2m 89% 88.5%
Avg. \ 90.3% \ 88.3%
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Fig. 12: Embeddings of the Discriminator component

(orientation labels). As a result, however, we only see the end
probability output of the network using accuracy as a metric
but not how the network learned.

Deep models’ layer activations are multidimensional and
sparse, beyond the human capacity to interpret and identify
the patterns. Therefore, we are using a well-known statistical
analysis method called t-SNE [34] to convert the higher
dimension learned representation into two dimension space
while preserving the learned features where it is easier to
interpret and analyse. This is often referred to as embeddings
of the deep neural network learnings.

In our experiment, we analyse the last fully connected layers
of embeddings of our network’s discriminator and classifier
components. We project the embeddings into 2D space and
assign the labels to analyse the clustering of the embeddings
in epochs 10 and 100.

Figure 11 shows the embeddings for epochs ten and 100,
where the colours correspond to the activity label. Initially, two
main clusters exist in the embeddings, and intra-clusters have
overlaps in the boundaries. For example, the model created
one cluster for leg swing and sit&stand activities. However,
once the model has been trained, we can see a clear boundary
between leg swing and sit&stand activities in the embeddings.
The rest of the activities are clustered together. However, the
overlap between the rest of the activities is minimal (especially
between the Push&Pull and clap activities).

Figure 12 illustrates the embeddings of the discriminator
component’s final layer. Since the discriminator’s goal is
opposite to the activity classifier (increasing the loss), we can
observe the de-clustered embeddings compared to the final
stages of the model training.

IV. RELATED WORK

A decade of research has been inventing an ample number
of WiFi-based sensing models [35]-[37], and recently lever-

aged by Deep Learning [38], [39]. However, one of the key
challenges in WiFi sensing is the domain shift problem where
the domain being either the sensing environment [9],subject
[40] or the subject’s position relative to the sensor [41]. More
specifically, the sensing model tends to perform poorly when
tested in a domain with a data distribution significantly differ-
ent from the training dataset. Domain shift occurs when the
marginal distributions of the source and target data sets differ
[37], [42] as the problem is mainly relevant to interaction
between model and input, in the wireless sensing literature
this is addressed either by Input Processing; processing the
input to suppress the domain shift impact in the input signal
or Model-based Alignment; developing the models that can
tolerate domain shift while maintaining good performance.

The latter draws mainly on domain adaptation literature that
aims at developing models capable of operating in diverse
target domains regardless of the distribution data set it was
trained in.For example, a model is trained on images captured
on a rainy day to identify the road signs but needs to be tested
on images captured on a sunny day. Being the task is the same
but source and target domains are different making the model
perform badly in a new domain it doesn’t yet know.

Input Processing WiAG [43] leverages analytical trans-
lation to generate virtual samples for different locations and
orientations in single environment. Extending the analytical
translation functions to advanced scenarios (e.g. multi-arm
gestures) or other applications isn’t straightforward. Thus,
subsequent works [8] targeted extracting domain-independent
input. Widar 3.0 and WiPose leveraged BVP for gesture recog-
nition and pose estimation; respectively. They share the same
motivation of our work albeit our methods are different. More
specifically, they invariant Doppler that is independent of the
receiver configurations. At a high level, their approach aims
at reconstructing velocity profile at fixed reference point (i.e.
the body coordinates). WiHF [44] addresses this limitation by
proposing domain-independent motion change pattern features
which describes the power distribution over different velocities
of the body parts involving the gesture movement. WiGesture
[45] proposes a similar feature referred to as MNP (Motion
Navigation Primitive) for generating a hand relative view of a
gesture. However, this feature requires multiple WiFi receivers
and is tested with figure gestures. We, on the other hand,
translate all Doppler measurements to reference orientation
using the proposed deep architecture. A key advantage of our
approach is that it can work in a single receiver setup rather
than multiple receivers. Making the system more ubiquitous
and convenient for use in confined spaces (such as in-car
sensing [46] ).

Model-based Alignment: In this direction, transfer learn-
ing was leveraged by CrossSense [30] through roaming models
based on MLP (multilayer perceptron). The idea is to trans-
late/roam the wireless features (captured by a localized model
trained on a single environment) to a novel environment. The
features captured by CrossSense are domain-dependent and
the classifier must be re-trained for each new environment.
This leads to excessive training effort as the number of
environments grows. To mitigate the issue, adversarial domain
adaptation [40], [47], [48] was investigated and demonstrated
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great success. EI [9] proposed to extract environment indepen-
dent features from multiple wireless sensing modalities with
a main goal of of remove the domain specific characteristics
from the model feature to achieve alignment. DualConFi [49]
proposed a new dual-stream contrastive learning model to
process and learn raw WiFi CSI data in a self-supervised
manner without requiring a large amount of data to train. This
method can complement our work by reducing the effort of
labelling. In addition, the novel approach of WiFi2Radar
can provide a more precise modality to improve WiFi-based
sensing, which can also be utilised in dual-stream-based deep
learning models. Therefore, incorporating these approaches
can potentially lead to improved performance and efficiency
in WiFi sensing applications.

Domain Adversarial Neural Network: Many systems that
followed the DANN (Domain Adversarial Neural Network)
[23], [32] in their core and encompassed three components;
feature extractor, activity recogniser and domain discriminator.
Traditional Generative Adversarial Networks has the so-called
minimax game between the generator and the discriminator.
DANN, however, has a feature extractor and activity recog-
niser that plays a cooperative game. The concatenated features
are extracted, and activity labels are fed to the discriminator.
The feature extractor and the domain discriminator play a
minimax game. At the end of the optimisation, the system
generates features that are discriminative to the activity and
independent of the domain.

Many domain independent sensing systems used DANN
[9], [40], [50] with alterations to the feature extractor and
used it with both activities labelled and unlabeled data.Some
efforts was followed up by attempts to further upgrade the
performance by using multiple discriminators. EUIGR [51]
uses two discriminators; one for users and another for environ-
ments. WiCAR [52] and CSI-GAN [53] proposed adding even
more discriminators. While this in general resulted in a better
performance, it was achieved at the expense of more complex
training procedure [53]. Our work builds on the advances
of deep adversarial-based features alignment and extends its
capabilities in a novel way. Our proposed model is based on
DANN, with the feature extractor replaced by U-Net style
autoencoder.We demonstrated practically that augmenting ad-
versarial architecture with a translation component improves
the performance of the underlying architecture without either
complicating the training procedure or requiring data from the
target domain.

Autoencoder-based Translation. In Wi¢Fi-2-Radar, we
leveraged a U-Net autoencoder as a component for WiFi
Doppler translation to high-precision Doppler. This is the
first time an autoencoder (U-Net is a specialised autoencoder
architecture) is used for modality translation to the best
of our knowledge. However, the autoencoder architecture is
prevalent in deep Learning applications in WiFi due to its
capability in feature extraction. Wang et al. [54], [55] discuss
the limitations of the manual feature extraction in WiFi as
handcrafted features often lead the inference task to lower per-
formance, and they propose a localisation, activity and gesture
recognition architecture utilising a 3-layer sparse autoencoder
for feature learning. The experimental environments contain 6

radio receiver/transmitter pairs to capture the variances of Re-
ceived signal strength (RSS). Localisation accuracy of 100%
was observed. Gao et al. [56] utilises a similar model for deep
feature extraction from image features extracted using colour
correlogram, colour autocorrelogram, Gabor filter, and Gray
level co-occurrence matrix. Image features were extracted
from CSI radio image built from CSI amplitude and calibrated
phase information. Finally, this approach is used to locate and
recognise the activities performed by the users, and the deep
learning-based feature extraction improves approximately 2%
accuracy to original accuracy of 93%.

A Fingerprint method for indoor localisation using an
autoencoder-based deep extreme learning machine (ADELM)
is proposed by Katab et al. [57] for RSS-based localisa-
tion. The autoencoder eliminates the need for random weight
generation for the extreme learning machine by generating
the hidden layer output matrix from the extracted features.
ADELM produces a success rate of 92.82% where prior work
produces only 86.66% success rate.

Similar to Katab et al., Chang et al. [58] use an autoencoder
model for unsupervised pre-training the Deep Neutral Network
(DNN) for localisation. This DNN model achieves significant
performance improvement of mean distance error 0.47 m and
1.32 m respectively for two target environments. Zhao et al.
[59] propose a convolutional autoencoder-based approach to
achieve the pre-training of the neural network for localisation.
The proposed model achieves near 100% localisation accuracy
in a grid of 28 sensor nodes test environment.

In summary, autoencoder based feature extraction has been
a popular architecture in wireless sensing since it can improve
the performance of the models compared with the manual fea-
ture extraction. However, there has not been any autoencoder
model for high-precision Doppler feature translation as our
proposed model.

V. DISCUSSION AND FUTURE WORKS

In this work, we have demonstrated the applicability of
the well-known U-net architecture in translating features from
a low-resolution modality, i.e., WiFi, to a high-resolution
modality, i.e., mmWave radar, which significantly improved
the performance of some basic human gesture recognition task.

One of the limitations of our work is that a single WiFi
receiver might not consistently and adequately gather infor-
mation when the user is positioned behind the data collection
device, or when there are obstructions in the scene that hinder
data reception. However, we acknowledge that addressing
these challenges is a potential avenue for future work.

However, applications, such as controlling smart home de-
vices, where users inherently face the appliance, could greatly
benefit from our suggested model.

As part of future research, we plan to investigate the
impact of signal attenuation caused by partial occlusion and
signal reflection within a limited range on our results. This
exploration aims to improve the model’s robustness under
these conditions and enhance its real-world applicability.

Additionally, our current model has not undergone testing
across a range of CSI data collection speeds, which may affect
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its performance. Furthermore, the model’s ability to accurately
classify unseen gestures has not yet been thoroughly evaluated,
which presents a potential challenge for future investigations.

It’s been discussed in the literature that there’s possi-
ble performance improvement when it comes to wifi-to-wifi
translations collected at different locations [60]. However,
the improvements are not significant and consistent. Thus,
we haven’t tested the possibility of translation between the
different wifi pairs, especially regarding the wifi data collected
at the boresight direction and other directions which could
have been a some improvement.

An interesting future direction would be to explore similar
translations between different modality pairs, e.g., WiFi-to-
Camera and mmWave-to-Camera. The applications of such
translations to more challenging recognition tasks, such as
multiple person activity recognition, fine-grained gesture
recognition, human-robot interaction detection, etc., would
also be worthwhile.

VI. CONCLUSION

We have proposed and demonstrated the feasibility of deep
learning to translate WiFi observations of human activities
to their corresponding observations from a millimeter wave
radar. We have further shown that when used with appropriate
neural networks, such translations can significantly enhance
the capabilities of WiFi to recognise human activities per-
formed from any arbitrary orientations. We have tested the
effectiveness of our approach with real human experiments and
confirmed that the outcomes are valid across different subjects
and environments. Since our approach requires the radar only
during training while all inferences can be achieved with WiFi
signals alone, it can be readily used with any existing WiFi
infrastructure.
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