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Respiratory pattern tracking proved to be critical for many applications ranging from well-being mon-
itoring and stress management to dealing with chronic breathing abnormalities. Specific breathing and
meditation exercises have been designed to improve well-being of users based on monitoring the com-
plete breathing waveform. While wearable systems had leveraged a wealth of information available from

Keywords: respiration stream in a variety of applications, contact-less sensing systems are lagging behind when it
Biofeedback comes to capturing detailed breathing metrics. In this work we propose WiRelax; the first non-contact
Breathing respiratory biofeedback system that relies solely on WiFi availability. We propose algorithms that map the

WiFi changes in the Channel State Information (CSI) to the instantaneous breathing state. The key contribution
Device-free is a model that relates relative phase of the received signal and the micro-motion of the chest during
breathing. A novel processing pipeline is developed to extract a single breathing waveform from CSI data
captured across noisy multiple sub-carriers in real-time. Our evaluation in a real-world setup shows that
WiRelax can estimate real-time breath-by-breath cycle time with median error less than 0.25 s ( < 13%

relative to the cycle length) thus enabling accurate device-free respiratory biofeedback.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Awareness of one’s breathing habits and conscious breathing
techniques leads to reduced stress and is considered fundamental
to achieving physical and mental well-being. Detailed respiratory
pattern information is highly discriminatory of physiological stress
[1]. Additionally, breathing exercises are frequently used in clinical
treatment of breathing related disorders such as Attention Deficit
Hyperactivity Disorder (ADHD), Chronic Obstructive Pulmonary
Disease (COPD) and Asthma [2-4].

Real-time access to fine-grained breathing data and the as-
sessment of a subject’s breathing quality are crucial tools used
across these applications. Monitoring of breathing is most com-
monly achieved with dedicated wearables that users wear during
an exercise, including textile sensors, wearable belts, or sensors
attached to the chest [5-7]. Several commercial products use wear-
able technology to assess respiratory patterns. For example, Spire
[8] monitors user stress based on breathing features such as rate,
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depth, inhalation-to-exhalation ratio (IER), durations of inhalation
and coaches the user towards calmer breathing to alleviate the
stress. Similarly, Prana [9] monitors depth, retention, smoothness,
exhalation time, and time between breaths [9] and allows users to
pick from a library of breathing exercises such as Yoga Pranayama,
Tai Chi, and Buteyko for retraining their breathing patterns. In
addition to dedicated wearables, increasing number of smartphone
apps target the space of meditation and breathing exercises. Smart-
watch manufacturers are already integrating mindfulness software
in their products. For example, Apple’s Breathe app [10] guides the
user during breathing exercises by requiring him to breathe-in/out
following a circle animation. However, this is done without actual
monitoring of the breathing progress. Such guidance is blind to
subject behavior and lacks continuous feedback

On the other hand, Device-free systems provide a more com-
fortable alternative, especially when monitoring is required over
long-term. Majority of device-free systems use wireless radio sig-
nals and relatively expensive hardware to monitor user breathing,
including FMCW radar [12], USRP [13] or Doppler radar [14], which
limits their deployment potential. Off-the-shelf WiFi technology
provides a viable cost-effective alternative [15-17]. However, exist-
ing WiFi-based systems primarily focus on breathing rate estima-
tion and cannot report detailed instantaneous respiratory pattern
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Fig. 1. WiRelax leverages WiFi communication to provide subject with Instanta-
neous respiratory feedback during meditation sessions (demo: [11]).
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information. Questions about the ongoing respiratory pattern, such
as, current cycle (inhalation/exhalation/retention), timing (e.g.
inhaling for 0.75 s), breathing depth (e.g. shallow/deep) can’t be
answered directly using existing approaches. These information
are equally important in biofeedback and well-being monitoring
applications and ubiquitous contact-free breathing biofeedback
solution is yet to be realized.

In this paper we propose WiRelax, a device-free system for
real-time monitoring of detailed breathing patterns of a user,
which is a key enabler of breathing exercise and biofeedback sys-
tems. The system is based on analyzing channel state information
(CSI) of WiFi packets transmitted between two commodity WiFi
devices, such as a tablet and a smartphone (see Fig. 1).

WiRelax needs to inform the subject about the instantaneous
breathing performance (duration and depth) within the breath-
ing session. Instantaneous reporting provides timely feedback and
enables the subject to apply breath control action. Consider the
scenario illustrated in Fig. 1 in which the subject is practicing 6-
second paced breathing (3 s inhalation & 3 s exhalation). The vi-
sual feedback consists of a color-coded circle that progresses in
the direction of the dashed arrow as the system senses user inhal-
ing (green color) and exhaling (red color). In state 2, for example,
the subject observes that he completed 50% of the exhalation cycle
and has 1.5 s more to go (gray segment). Ultimately, instantaneous
sensing and feedback allow him to synchronize his breathing with
the desired exercise settings.

Several challenges arise in our use-case scenario. First, we re-
quire the breathing progress to be reported continuously during
the breathing cycle. Conventional peak-to-peak distance [16] and
frequency analysis [15,18] approaches that are used to estimate
breathing rate are unsuitable for this purpose as their estimates
are performed on completed cycles segments (Fig. 2). We address
the challenge by introducing a model that correlates the instan-
taneous breathing-induced chest displacement of the user to the
change in CSI properties of the WiFi signal sub-carriers. According
to the model, the chest displacement will cause a linear shift in the
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Fig. 2. Cycle counting vs. instantaneous breath tracking: most CSI streams agree
on breath cycles count (3 cycles in orange segment), but they lack consensus about
instantaneous breath (i.e. whether the subject is inhaling or exhaling and at what
depth in the red segment). WiRelax addresses instantaneous breath tracking. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

receiver antennas phase difference. Additionally, the shift is pro-
portional to the chest displacement magnitude, which enables us
to identify breathing depth (shallow vs deep breathing). Driven by
the model, a novel signal processing pipeline is developed to ad-
dress the practical considerations of filtering out noisy sub-carriers
and fusing streams from many sub-carriers into a single breathing
waveform.

Our second challenge is the requirement to distinguish inhala-
tion and exhalation cycles, as it has been shown that Inhala-
tion/Exhalation Ratio (IER) modulates heart rate variability [19].
Reporting IER and other similar metrics is contingent on the ability
to make such distinction. We solve this problem through a calibra-
tion procedure in which we ask the user to perform a pre-specified
breathing sequence at the beginning of the session. The calibration
takes few seconds and makes the system agnostic to environmen-
tal changes and subject identities

Ultimately, the estimated waveform accurately matches the
timing of the inhalation/exhalation cycles and the amplitude of the
chest displacement. Our results in Section 4 show that the timing
errors are less than 0.5 s 83% of the time and the correlation be-
tween estimated breathing waveform and the ground truth is 77%.

Our contributions are summarized as follows:

1. We propose the first WiFi-based contact-less real-time mon-
itoring system for ongoing breathing cycles.

2. We model the relationship between breathing-related chest
displacement and the change in phase difference (PD) of
commodity WiFi packets. Unlike earlier models [15,20] that
focus on breathing frequency, the proposed model is de-
signed to infer instantaneous breathing dynamics (timing
and depth) making it suitable for biofeedback applications.

3. We demonstrate the effectiveness of the system by captur-
ing detailed breathing pattern metrics in real-world trials.
Specifically, we capture inhalation time, exhalation time, and
relative amplitude, and inhalation-to-exhalation ratio (IER).

The rest of the paper is organized as follows. Section 2 presents
an overview of the proposed WiRelax system which can accu-
rately capture the chest displacement profile of subjects. We then
present an analytical model that captures how chest displacement
affects the antenna phase difference in Section 3. This section
also describes the algorithm WiRelax uses to process the CSI data.
Section 4 evaluates the performance of WiRelax, Section 5 dis-
cusses related work. Section 6 discusses limitations and future di-
rections and Section 7 concludes the paper.
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Fig. 3. A sample breathing session.

2. Overview

In this section, we motivate our work using an illustrative ex-
ample and provide a brief overview of WiRelax. Detailed descrip-
tion of the system will be presented in the next section.

2.1. Motivating example

Our objective is to develop a system for real-time monitoring
of detailed breathing dynamics of a user. Our key insights are best
illustrated through an example. We conducted an experiment with
a single subject and two contact-less systems in a closed room. We
used a UWB radar! to capture the ground truth data for the chest
movement (plotted in Fig. 3). We also deployed two laptops, one
transmitter and one receiver, to measure CSI data using an Intel
5300 WiFi card. We processed the CSI data using the procedure in
[16], where for each sub-carrier, a Hampel filter was applied to re-
move outliers and then a moving average filter was used to remove
the high frequency noise irrelevant to breathing.

We plot the amplitude of the processed CSI data across sub-
carriers and phase difference of the CSI data between the two re-
ceiver antennas in Fig. 4. The top part of sub figures show the
data for all sub-carriers, while the bottom sub-figures show the
sub-carrier with the highest variance?. The ground-truth breathing
waveform is shown in Fig. 3.

We observe that while the frequency of the oscillation of the
breathing waveform is preserved in both the amplitude and phase
of the CSI data, the amplitude of the breathing waveform (the
chest displacement in Fig. 3) does not correlate well with the CSI
amplitude. Phase difference, on the other hand, shows a high cor-
relation with the breathing waveform and is more suitable for
monitoring breathing patterns with a fine-grained detail. Based on
this observation our modelling is based on phase difference mea-
surements. Next, we give overview of how the system works then,
in Section 2, we introduce the model and system implementation.

2.2. WiRelax overview

WiRelax works by tracking a stationary user that is seated in a
room equipped with two devices with commodity WiFi. At least
one of the devices has multiple antennas, which is a common
hardware feature used to improve spatial diversity of WiFi com-
munications.

Our system works in two steps. First, the user is asked to inhale
and exhale normally for 10 s to calibrate the system. The calibra-
tion step generates a user model that links the RF signal to user’s
breathing. Next, the system provides the user with detailed infor-

T Xethru X2-M200 radar (https://novelda.com/)
2 A sub-carrier’s variance is an indicator of its sensitivity [16]
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Fig. 4. Recorded amplitude and phase difference for the breathing signal of Fig. 3.

mation about his breathing patterns in real-time, through the con-
scious breathing graphical user interface (prototype in Fig. 13)

Fig. 5 shows the key algorithmic steps. The system first cap-
tures CSI data for both receiver antennas and calculates phase dif-
ference (PD) between the two CSI streams, referred to as Raw PD.
The raw data is then preprocessed to remove noise present in all
sub-carriers. Next, the system rejects outlier sub-carriers and se-
lects one of the remaining sub-carriers as a “reference” in the Se-
lection and Alignment step. In this stage, sub-carriers that have the
opposite phase of the reference are inverted to be aligned. In the
Waveform Estimation step, the data across all of the sub-carriers is
fused into a single CSI waveform, using linear regression. Finally,
the user model from the calibration step is used to transform the
CSI waveform to the breathing waveform.

3. WiRelax system

In this section, we discuss the implementation of WiRelax. We
start by modeling the relationship between chest displacement and
antennas phase difference of the radio signals. We then present
our pre-processing steps to de-noise the signals and a data fusion
algorithm for combining data from multiple sub-carriers into a sin-
gle breathing waveform.

3.1. The impact of chest displacement on sub-carrier phase difference

This section gives the intuition on how displacement affects the
phase difference of the CSI. A more detailed mathematical analysis
will be provided in Section 3.2.

WiRelax works with two receiver antennas, and we will use the
term phase difference (PD) to refer to the phase difference mea-
sured between the two antennas, typically calculated using the re-
ceived CSI data. The term should not be confused with path phase
difference commonly found in the literature, which refers to the
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Fig. 5. Illustration of WiRelax architecture. WiRelax is meant to be a framework that supports conscious breathing applications by providing real-time detailed breathing
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Fig. 6. The effect of object displacement on phase.

phase difference between two signals (typically direct path and a
reflection) as recorded by a single receiver antenna [20,21]. The lat-
ter cannot be measured from COTS WiFi but its impact on the re-
ceived CSI amplitude was modeled by earlier efforts and employed
in various applications [15,21].

We consider the situation in Fig. 6(a) where a transmitter (TX),
a receiver (RX) and a slowly-moving reflector (depicted as a thick
horizontal line) are lying on a plane. We assume that the reflec-
tor moves in the direction perpendicular to the line connecting the
transmitter and receiver. We consider ray tracing and in particular
the ray from transmitter to receiver via the reflector. We see from
Fig. 6(a) that the movement of the reflector causes the length of
this ray to extend. In particular, the thick green line shows the ex-
tra path traversed by the signal compared with an earlier time in-

stance. This extra path length A¢ causes an extra phase shift A¢
at the receiver [12]:
= 1)
where A denotes the wavelength. Since the extra path length A¢
is related to displacement of the reflector, the extra phase shift
A¢ therefore contains information on the unknown displacement.
This method of estimating displacement from phase shift has been
employed in [12,22]. However, this method requires the transmit-
ter and the receiver synchronise their radio carriers, which is not
available for commodity WiFi. In this paper, we will overcome the
lack of carrier synchronisation in WiFi by using the phase differ-
ence between two antennas of the same receiver.

Consider the situation in Fig. 6(b), which is similar to that of
Fig. 6(a), except that the receiver has two antennas. We again con-
sider ray tracing. There is a reflected ray from the transmitter to
each of the two antennas, shown as thin blue and orange lines. The
orange ray travels over a longer path length and the path length
difference between the two rays are shown as thick red line (lower
part of the figure) and thick green line (upper part of the figure).
The extra path causes a phase difference between the received sig-
nals at the two receiver antennas and we use it to estimate the
displacement of the reflector.

Note that the phase difference is computed with respect to a
common transmitter antenna which acts as a reference. Therefore,
the lack of synchronisation between the transmitter and receiver
is not a concern. Also, we assume that the unknown displacement
that we want to measure is small enough so that the extra path
length is less than one wavelength. This allows our system to be
agnostic to the phase wrap-around problem, where many different
extra path lengths correspond to the same phase difference (e.g.
a phase difference of % can be due to extra path lengths of vy
A+ %, 2A + % etc). In our scenario, the expected movement of the
chest is in the range of 4-12 mm and the wavelength of the 5GHz
signals is 5.7 cm [15].

A¢ =21

3.2. Modeling the impact of displacement on phase difference

The aim of this section is to derive a mathematical expression
relating the phase difference between two receiver antennas as a
function of the displacement of the chest as a reflector. We con-
sider the situation depicted in Fig. 7, which has the same setup
as that in Fig. 6(b) but with relevant distance labeled to facilitate
the mathematical analysis. Table 1 summarises the symbols used
in the mathematical analysis.
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Table 1
Symbols used in the mathematical derivation.

Symbol  Description
d Distance between TX and RX in the x-direction
k Distance between the two receiving antennas
he Nominal distance between the transmitting and the reflector in the y-direction
hy Distance between the receiving antenna 1 and the reflector in the y-direction
€ Displacement of the reflector in the y-direction from the nominal distance
- d - is €S. We see from Eq. (6) that the constant S depends on the dis-

Fig. 7. lllustrative example annotated with key symbols used in the model deriva-
tion.

Our model is based on ray tracing. We consider two rays for
each antenna: (1) LoS propagation from the transmitting antenna;
(2) Reflected ray by the chest. The difference in path length Ap;og
for the two LoS rays reaching the two antennas is:

Apios = (R E @
*\/((hr — (hy + k)2 +d? 2

This path length difference is independent of the chest displace-
ment. Without loss of generality, we assume h; = h; = h. Since the
inter-antenna distance k is small compared to d, we assume that
Apios is negligible.

When the chest is at a distance of € from its nominal posi-
tion, the difference in path lengths Ap(e) for the two reflected rays
reaching the two antennas is a function of €, as follows:

Ap(€) = /(h + hy +2€)2 + d?
/(e + (B + k) +2€)2 + 2 )

This results in a phase difference A¢(€) between the two re-
ceiving antennas:

Ap(€) = zTnAp(e) (4)

We again assume that h; = h; = h. Since the chest displacement €
is small compared with h, we approximate the right-hand side of
Eq. (3) using the Taylor’s series expansion in € that retains only up
to linear term. With this approximation, we have:

Ag(e) ~ Ap(0) = e (5)
where
s dAp(e) 4h 4h + 2k (6)

de |, J@hr+d?2  J2ht k)?+ d?

We assume that WiFi has C sub-carriers with wavelengths
X; where i=1,...,C and for the ith sub-carrier, the measured
phase difference between receiver antennas is Ag¢;(¢). By using
Eq. (5) for all C sub-carriers, we have:

Adi(e) — Agi(0) _ 1

> X—ieS fori=1,....C (7)

If we perform a linear regression with %ﬂmpim) as the depen-
dent variable and %'s as the regressors, then the estimated slope
1

tances between the transmitter, receiver and the user. Although it
may be possible to obtain the value of S through some calibration
process, this process can be cumbersome. In this paper, we will
use the estimated slope to determine the chest displacement up
to a proportional constant and we will refer to that as the relative
displacement.

3.3. Relative displacement estimation

Our proposed system uses the phase difference between a pair
of receiver antennas as the input.

In the beginning, our system acquires and processes phase dif-
ference signal for a calibration period of 10 s in which the user
is asked to breath normally. A model of the amplitude and phase
of user’s breathing is kept as a result of this step. Next, the sys-
tem follows a series of processing steps to remove noise in the CSI
samples, reject outlier sub-carrier data, and to fuse data from mul-
tiple sub-carriers. Overview of the steps was presented in Fig. 5.
We next describe the individual processing steps in a more detail.

3.3.1. Calibration

In the calibration step, the system instructs the user to breathe
normally for 10 s and then gives an audio cue to indicate the start
of the calibration step. During calibration, the subject is expected
to hold the breath for about a second, then repeatedly breath in
and breath out in relaxed manner until the end of calibration, sig-
naled with another audio cue. After that, the subject will follow
the breathing exercises. The system records CSI data during cal-
ibration, which is subsequently used to resolve ambiguity in the
sign of + 180° phase shift, which in turn causes ambiguity in dis-
tinguishing between inhalation and exhalation. By asking the sub-
ject to inhale first before exhaling in the calibration process, we
can capture the sign corresponding to inhalation and exhalation
for them to be correctly identified later. In summary, the calibra-
tion data is used to model:

« Amplitude of the normal breathing: The median of the esti-
mated breathing amplitude during calibration is kept as the ref-
erence amplitude. The information is used for tracking breath-
ing depth.

Direction of the phase difference in Inhalation and Exhala-
tion cycles: Identifying inhalation vs exhalation is achieved by
relating the change in the produced waveform to the actual ex-
pected breathing pattern during calibration. The information is
vital for capturing inhalation/exhalation ratio among other met-
rics.

It should be noted that the calibration stage (10 s) is per-
formed once in the beginning of each breathing session (lasting
10-15 min).

3.3.2. Denoising and outlier removal

The aim of the preprocessing step is to de-noise the signal be-
fore handing it over to the filtering module. The preprocessing is
done for each individual sub-carrier independently. First, we use
the Hampel filter to remove outlier samples that render themselves
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Fig. 8. Preprocessing. Preprocessing depicted for a 1-minute segment of breathing session (rate 40bpm). Time is on x-axis. Lower row show preprocessing sequence applied
to a single sub-carrier (#9) while upper one depict the preprocessing impact on all sub-carriers (sub-carriers numbers on y-axis). Values in upper sub-figures scaled to range

[0-1] for each sub-carrier for visualization purposes.

as abrupt changes. In particular, we discard any point falling out-
side the range of [ — T x 0, u + T x 0], where i, o and t are the
median, mean absolute deviation and the threshold, respectively.
The window size is set to 1 s. Next, to filter-out irrelevant high fre-
quency noise, the sub-carriers streams are subjected to a moving
average filter. We use a moving average filter with a larger window
size (defaulted to 3.5 s) to extract the sub-carrier dynamic trend.
We then subtract the obtained trend from the original data stream
to get the de-trended data (Fig. 8(e)).

We observed during our experimentation that occasionally a
few (typically fewer than 3) noisy sub-carriers are present in the
data. These noisy sub-carriers vary in a random way throughout
the whole breathing session and do not reflect the actual breath-
ing. Excluding these sub-carriers altogether as early as possible en-
sures reliability of subsequent operations. To identify them, we use
the following heuristic.

> T, outlier
<71, otherwise

abs(Var;(PD)) = { (8)
where Var;(PD) denotes the variance of the phase difference for the
sub-carrier i; The default value for t is 0.87.

In the final step of the preprocessing, the Savitzky-Golay poly-
nomial least squares filter (SG Filter) is employed. It serves
the purpose of smoothing the signal while preserving the steep
changes [23] and is useful for preserving the position of the peaks
and valleys. Fig. 8(f) shows an example of pre-processed single
sub-carrier.

3.3.3. Selecting sub-carriers

While previous work exists on selecting the informative sub-
carriers [15,16], we base our sub-carrier selection algorithm on an
observation that sub-carriers with high variance are more repre-
sentative of the actual breathing pattern. Fig. 9 shows the correla-
tion matrix of all 30 sub-carriers (each scaled to [0-1]) sorted by
their variance. We include the reference signal (“GT”) in the cal-
culation. We observe: 1) high variance of sub-carrier signals corre-
lates strongly with GT, 2) top sub-carriers correlate well with each
other. Based on these observations, we select sub-carrier that has
the highest variance and passes certain criteria and then select all
other sub-carriers that correlate well with it. These selected sub-
carriers will be fused later by the waveform estimation module.
The detailed selection procedure is as follows:

08

0.6

0.4

02

0.0

Fig. 9. Sub-carriers Correlation : shows the correlation between all sub-carriers
and the ground truth (GT) for a subject breathing normally. Matrix rows are ordered
by their variance, the highest value on the top. Sub-carriers with higher variance
show a better correlation with GT in general.

+ We sort sub-carriers in descending order based on their vari-
ance.
For the top 20 sub-carriers, we calculate the correlation score as
the average correlation between it and every other sub-carrier
in this list.
We pick the sub-carrier with highest correlation score as the ref-
erence if its number of peaks is close to the median number of
peaks for all top sub-carriers (less than one standard deviation).
Otherwise, it will be discarded and the next candidate will be
considered. The rationale is based on the observation that sub-
carrier’s high variance does not necessarily reflect its sensitivity
level. A noisy sub-carrier with high variance will have a much
higher number of peaks than the majority of other sub-carriers
due to random fluctuations.
+ The process is continued until a suitable reference sub-carrier
is found.
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Fig. 10. Breathing Waveform Estimation as explained by Eq. (7) by regressing over successive PD samples (c-g samples in (a)). Based on this the estimated waveform aligns

well with ground truth (b).

» From all sub-carriers, we add the sub-carriers that are strongly
correlated with the reference one (absolute correlation > 0.65)
to the list.

3.3.4. Alignment

Some sub-carriers in the selected subset will have an oppo-
site phase to the reference sub-carrier. We align all sub-carriers
with the reference one by inverting sub-carriers that have negative
cross-correlation with the reference signal.

3.3.5. Estimating breathing waveform

The input to this step is a number of PD streams (or time se-
ries) where each stream corresponds to a selected de-noised and
aligned sub-carrier. The black curves in Fig. 10 show an example.
In this step, we ‘average’ these data streams to compute the rela-
tive displacement via linear estimation.

Linear Estimation. The rationale behind linear estimation is re-
lated to our earlier observation that the phase difference and chest
displacement are linearly related. The idea is that, at each time
instance, we perform a linear regression with the PD of the sub-
carriers as the dependent variables and the inverse wavelength of
the sub-carriers )»l, as the regressors. To illustrate this idea, we se-

lected five time instances which are indicated by the red dotted
lines in Fig. 10(1). At each time instance, we plot the PD of the se-
lected sub-carrier against the sub-carrier index in sub-figures (c)-
(g) in Fig. 10. These sub-figures also show the fitted line in red
color. We can see from these figures that the trend is almost linear
but the noise level is fairly high. By repeating this process for all
time instances, we arrive at the estimated relative displacement.
Fig. 10(b) compares the estimated relative displacement (calibra-
tion information utilized) and the ground truth. To counter the
error that might result from fusing noisy sub-carriers, the regres-
sion residual error is continually monitored for every selected sub-
carrier and the overall median as well. When the residual error
of specific sub-carrier is higher than the median by more than 1.5
standard deviation, it will be excluded and the regression-based
estimation will be repeated to produce a refined estimation.

Fig. 11 (a) shows example estimated waveform during normal
breathing session and the corresponding reference waveform. In
this example, WiRelax achieves timing error of 0.21 s (12.2% rel-

ative timing error). The inhalation to exhalation ratio (I/E ratio)
is another metric commonly used in paced breathing exercises
and WiRelax estimates it with an error of 14.4%. Visually, we can
observe the similarity between the estimated and the reference
waveforms across the five-minute segment and this is confirmed
by the high correlation (0.88) and low RMSE (0.12) of the recon-
structed wave-form and the reference signal. Fig. 12 shows corre-
lation between the estimated and the reference waveforms for var-
ious respiratory pattern examples.

4. Evaluation
4.1. Goals, metrics and methodology

We show that WiRelax provides real-time full-cycle respiration
feedback during meditation practice. For this purpose, we con-
sider a meditation space, also called “Quiet Room”. Similar rooms
are available to employees in work environments [24]. The subject
would place her portable WiFi enabled devices in front of her, pick
a specific exercise (or manually setting inhalation/exhalation time),
and start practicing. Feedback is provided during the session. We
employ a pair of laptops as the communicating devices>. Typically,
the user would need the devices close enough to be able to ob-
serve the real-time feedback. Nevertheless, in our experiments, we
vary the distances in the range 1-3 m to evaluate the performance
of WiRelax for different room sizes.

Feedback: Although we leave the feature-rich interactive user
interface design as a future work, we designed an initial proto-
type for providing in-session feedback (Fig. 13). After experiment-
ing with a few designs, we find the circular segmented (radial
donut) user interface component is generally preferred by the sub-
jects (top left in Fig. 13). We process incoming packets every 0.1 s
to simulate real-time input. WiRelax processing was implemented
on MacBook Pro-running macOS Sierra v 10.12.6 with 8 GB RAM
and 2.7 GHz Intel Core i5 processor. Implementation was done in
Python 3. NumPy and scikit-learn libraries were utilized for pro-

3 Currently, commodity smartphones’ wireless cards can export CSI data us-
ing tools as Nexmon Channel State Information Extractor (https://github.com/
seemoo-lab/nexmon_csi)
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cessing data and rendering the output. With these configurations,
it takes WiRelax 180 ms on average to process one second of input
data and produce the estimated waveform.

Data Collection We collected data from several “quiet rooms”
to evaluate WiRelax. The WiFi transmitter and receiver are HP
elitebook 6930p Laptops equipped with Intel 5300 WiFi cards.

Breathing Pattern

relative displacement
PD (detrended)

Slusuiainseaw Me.l

Sample

pattern and depth tracking

Fig. 13. WiRelax biofeedback prototype (demo: https://youtu.be/e_er2w39b4l).

These laptops are placed on a desk and collect the WiFi CSI data
using Linux 802.11n CSI Tool [25]. The ground truth for chest dis-
placement was collected by an X2-M200 UWB-IR sensor [26]. This
sensor has been employed in a variety of vital sign monitoring
applications [26] and reportedly has a maximum deviation of 5%
compared to PSG reference airflow and thorax/abdomen displace-
ment measurements [27]. The sensor reports chest displacement
in millimeters at 20Hz sampling rate. Ten volunteers (8 males and
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Fig. 14. Evaluation of different breathing accuracy metrics with respect to distance between the user and WiRelax system.

2 females) participated in the data collection process over a to-
tal period of 4 months.* For each user, we run several experi-
ments to evaluate the impact of the distance between the user and
the sensor on WiRelax algorithm performance. We select the key
signal processing parameters using leave-one-out cross validation
(LOOCV) in which data from single user is used for testing the pa-
rameters that were determined using data from all other users.

Metrics: We use the same quantitative metrics as previous
work, including the real-time cycle timing error and relative tim-
ing error (also called progress time error) metrics used by Hao
et al. [7], and the normalized amplitude Root Mean Squared Er-
ror (RMSE) and correlation between normalized waveforms used
by Lee et al. [28].

4.2. Capturing breathing cycles

In this section we evaluate the performance of WiRelax in
terms of the accuracy of breathing cycle time and amplitude es-
timation. We also study the impact of the distance parameter h
defined in Section 3.2. Fig. 14 shows the accuracy of the proposed
system for various timing and amplitude related metrics across the
three distances considered.

Fig. 14 (c) plots the breathing rate error. The system estimates
the rate accurately, with a median error of 0.15 bpm for a distance
of 1 m, which slightly increases to 0.2 bpm for larger distances.

4 Data collection approved by Human Research Ethics committee in University of
New South Wales.

Inhalation and exhalation cycles are also captured accurately (see
Fig. 14(a)) with median errors of 0.24 s, 0.23 s and 0.32 s for 1 m,
2 m and 3 m, respectively. We note that an error in the cycle time
estimation has a direct impact on the next cycle. For example, a
small positive error in the inhalation cycle of +0.1 s will introduce
an error of —0.1 s in the following exhalation cycle.

The relative timing error is a more descriptive measurement of
the timing accuracy because the cycle length is taken into account
here. WiRelax achieves the median relative timing error of 12.9% at
a 1 m distance. Intuitively, the timing errors observed in WiRelax
are related to the number and the quality of representative sub-
carrier signals measured by the Wi-Fi hardware. Signal-to-noise ra-
tio of these signals decreases with increasing distance between the
test subject and the measurement apparatus, which translates into
lower accuracy.

Amplitude-related metrics are shown in Fig. 14(d), (e). Similar
to the timing metrics, amplitude estimation performance degrades
with an increasing distance, albeit at a higher rate. There are two
reasons for this. First, timing-based metrics are only impacted by
the cycle start/end positions while amplitude is impacted by the
whole PD time-series that dictate the waveform shape. Second,
misalignment caused by the timing errors further amplifies the
amplitude errors.

4.3. Capturing complete breathing pattern

While WiRelax is concerned mainly with providing accurate in-
session feedback to the user, it is informative to put WiRelax in
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gorithms: Liu et al. [16], PhaseBeat and WiRelax. The gray line shows the ground
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aries (marked by large red circles). (b) PhaseBeat [18] employs inter-peak duration
for a chosen single sub-carrier to estimate the breathing rate. (c) WiRelax employs
a cohort of selected sub-carriers to estimate the final breathing waveform. (For in-
terpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

context with state-of-the-art WiFi-based breathing monitoring sys-
tems. We focus on amplitude-based system [16] and two phase
difference-based systems [18] and [29]. For objective comparison
we consider only the breathing rate for [29] and the complete cy-
cle length metric for [16], while the complete waveform (timing
and waveform amplitude) is compared to PhaseBeat [18].

We present brief description of these systems along with repli-
cation considerations for convenience:

« Liu et al. [16]: amplitude measurements from 30 sub-carriers
are used. Data calibration is applied to mitigate the noise in
raw data. Then, the most sensitive sub-carriers (blue curve area
in Fig. 15(a)) are selected based on their variance. Next, peaks
locations are calculated while considering fake peak removal in
the process. Finally, weighted average of all peak-to-peak inter-
vals across selected sub-carriers is employed to get the breath-
ing rate.

PhaseBeat [18]:Phase difference data from 30 sub-carriers at
400 Hz sampling rate are used as input. DC component and
high frequency noises are removed through calibration. Next,
the top 3 sub-carriers with maximum mean absolute deviations
are picked. Out of them, the median one is the final selection.
TensorBeat [29]:

Phase difference data from 60 sub-carriers (two antenna pairs)
at 20 Hz sampling rate are used as input. After calibration, a
two-dimensional Hankel matrix is constructed from 600 con-
secutive packets of each sub-carriers. The 60 Hankel matrices
are stacked into the 3-dimensional tensor. Since we have a sin-
gle user, the tensor’s rank was fixed to 2. Next, tensor decom-
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Fig. 16. TensorBeat [29] processing for same data of Fig. 15.

position is applied using CP decomposition [30] and autocor-
relation is calculated on the fusion of the decomposed signal
pairs. Finally, the rate is reported based on average inter-peak
duration.

We show the performance of different algorithms based on an
experiment with one subject. Over a period of 30 s, the subject
was asked to perform deep breathing for 10 s, then normal breath-
ing for 10 s and finally deep breathing for 10 s. The purpose is to
create a breathing pattern whose amplitude varies over time. The
true breathing pattern captured by the UWB sensor is plotted in
gray line in Fig. 15(a)-(c).

The WiFi CSI data was processed by the algorithm of Liu et al.,
as well as PhaseBeat, WiRelax and TensorBeat. The results from the
three algorithms are shown in Fig. 15(a)-(c) while those for Ten-
sorBeat are in Fig. 16.

We first consider Fig. 15(a)-(c). In these figures, the solid gray
and red circles show the timing of the true and estimated peaks,
respectively. The gray ticks near the top of each subplot show the
deviation between the timing of the true and estimated peaks.
Therefore, a wider tick indicates a larger timing error and vice
versa.

For waveform estimation, it can readily be seen that WiRelax
has the least timing error, 0.21 s compared to 0.41 s and 0.266 s
for Liu et al. [16] and PhaseBeat. In addition, WiRelax is able to get
the relative chest displacement amplitude much more accurately
compared to PhaseBeat (WiRelax Normalized RMSE is 0.1081 com-
pared to 0.2716 by PhaseBeat). TensorBeat estimates the breath-
ing rate from the median peak-to-peak distances (see Fig. 16(c)).
The fused breathing signal 16(b) doesn’t match the actual breath-
ing pattern. While a noticeable decrease in breathing depth can
be seen in Fig. 16(b), the state transition (deep to shallow to deep
again) is missing.

5. Related work

The work presented here is related to the relatively large body
of literature about respiration tracking. In this section we survey
several categories of research and the related consumer products
available in the market.
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In a clinical setting, Respiratory Inductance Plethysmography
(RIP) [31,32] is commonly used as the “gold standard” for monitor-
ing respiration. Although it is accurate, the cost and inconvenience
of RIP motivates researchers to investigate alternative techniques,
especially for applications that require daily monitoring. The tech-
niques generally break down to two categories: wearable device
and device-free monitoring.

5.1. Wearable device monitoring

A large body of previous research used attachable sensors
to monitor breathing. Examples include, textile-based systems
[5,6] that imitate RIP by using conductive materials that track
the expansion and contraction of chest during respiration. Zephyr
[33] used built-in accelerometer and gyroscope sensors in a phone
placed on the user’s chest to estimate respiratory rate. Recently,
MindfulWatch [7] proposed the use of smartwatch’s inertial sen-
sors to track breathing cycles in real-time for meditation applica-
tions.

Stress detection and management based on breathing monitor-
ing is also a commercially active area. For example, Spire [8] uses a
patented respiration sensor [34] to collect respiration characteris-
tics and recommends meditation sessions and breathing exercises
to manage the stress. Prana [9] monitors breathing patterns us-
ing wearable pod or belt and offers interactive games (controlled
through breathing) for guiding the users during breathing exer-
cises.

5.2. Device-free monitoring

Closely related to our approach, device free systems can mon-
itor vital signals of a user without requiring the user to wear a
sensor. Among them, RF based sensing systems belong to the most
popular device-free systems.

Respiration Rate Sensing: UbiBreathe [17] employs WiFi ra-
dio signal strength (RSS) to monitor breathing rates. mmVital
uses RSS of a 60 GHz millimeter wave signal for breathing and
heart rates monitoring. Liu et al. [16] and PhaseBeat [18] lever-
aged WiFi channel state information (CSI) to monitor breathing
rate and, also, heart rate after utilizing directional antennas. Later,
CardioFi [35] leveraged enhanced sub-carrier selection mechanism
for better heart rate monitoring without requiring special anten-
nas. A number of amplitude-based respiration sensing systems
[15,20] based on the Fresnel Zone Model were developed. The
model relates one’s chest movement to the received WiFi sig-
nals amplitude measurements. As chest displacement crosses Fres-
nel zones, the receiving signal shows a continuous sinusoidal-like
wave, with peaks and valleys generated by crossing the bound-
aries. This allows for breathing pattern extraction. Our model, on
the other hand, is based on the phase difference measurements
and goes beyond pattern capturing to explain how breathing depth
can impact captured PD measurements.

Respiration Detection Range: Recently, there are a few works
focused on improving the detection range of WiFi breathing. Full-
breath [36] uses phase and amplitude measurements simultane-
ously and employs conjugate multiplication of two antenna mea-
surements to improve breathing detectability. FarSense [37] pro-
posed to use “CSI ratio” to push the respiration sensing range to
house level (up to 8-9 m).

The main distinction between our work and related device-
free WiFi breathing monitoring systems is the focus on extracting
breathing biofeedback information. For this, our system is designed
to address the requirements of reporting instantaneous breathing
depth and timing while the breathing cycle is still ongoing. The

ability of the proposed model to regress directly on incoming PD
measurements enables such tracking without having to wait for
the cycle completion. This, in turn, enables WiFi-based interactive
breathing applications.

6. Limitations and future work

Advances in device-free sensing using COTS WiFi have recently
sparked a renewed interest in their applications for fine-grained
sensing applications including vital sign monitoring. In this work
we focused on reliable and detailed monitoring of the breath cycle
and its characteristics. Our findings suggest that COTS WiFi can be
effectively employed for conscious breathing monitoring and real-
time feedback.

However, WiRelax has its limitations. First, the CSI data is sensi-
tive to multi-path interference specific to the environmental setup.
We acknowledge that WiRelax performance might be impacted by
the movement of people nearby. The environmental impact limi-
tation is fundamental to WiFi and other device-free sensing sys-
tems and presents an important challenge for future research [38].
Currently, we are exploring ways to mitigate the impact of irrele-
vant motions, for example, by developing a “Breath Model” [7] for
the users. Breathing patterns do not change dramatically between
consecutive cycles, which allows us to suppress the noise in the
breathing cycle estimation by fusing information from a previous
(noise-free) reference cycle.

Second, we adopted preliminary visual feedback scheme in the
WiRelax prototype, to demonstrate the real-time breath-by-breath
monitoring capability. The subject can observe his instantaneous
behavior and adapt accordingly. However, a further user-centric
study might be needed to improve its responsiveness and make it
more intuitive. For example, studies show that auditory feedback
is superior to visual feedback in creating self-reported calm [39].
Another important feedback that our system can provide is a sum-
marized per-session breathing performance, which is vital for long-
term tracking of breathing habits. Our future work will investigate
visual, auditory, and summary features to further improve WiRelax
capabilities.

7. Conclusions

To enable interactive breath control applications, this paper pro-
posed contact-less sensing of instantaneous breathing dynamics
using WiFi channel (CSI). Tracking on-going breath cycles using
WiFi was never explored in past research as per authors’ best
knowledge. Contrary to complete cycles tracking (breathing rate),
on-going cycle progress reporting is complicated by the need to
map divergent measurements from noisy sub-carriers into a sin-
gle instantaneous breathing state (time and depth) while main-
taining sub-second responsiveness (i.e. instant sensing and feed-
back loop) necessary for biofeedback. We approached the prob-
lem guided by observations about the stability of phase differ-
ence (PD). Our study of the impact of micro-motions on the PD
measurements culminated into a model showing the linear rela-
tion between the two quantities. Interestingly, this enables map-
ping the instantly measured PD into chest displacement (up to rel-
ative constant). Consequently, inferring breathing progress without
waiting cycle completion is theoretically feasible. To get reliable es-
timation in practice, a novel sub-carrier filtering and selection was
adopted and robustness was further enforced by leveraging simple
per-session calibration procedure. WiRelax is able to report sub-
second breathing progress in real-time with median timing error of
0.25 s. The system requires neither training nor information about
subject identity and ready to deploy on off-the-shelf WiFi devices.
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This opens the door to employing WiFi sensing in biofeedback ap-
plications on large scale.
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