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a b s t r a c t 

Respiratory pattern tracking proved to be critical for many applications ranging from well-being mon- 

itoring and stress management to dealing with chronic breathing abnormalities. Specific breathing and 

meditation exercises have been designed to improve well-being of users based on monitoring the com- 

plete breathing waveform . While wearable systems had leveraged a wealth of information available from 

respiration stream in a variety of applications, contact-less sensing systems are lagging behind when it 

comes to capturing detailed breathing metrics. In this work we propose WiRelax; the first non-contact 

respiratory biofeedback system that relies solely on WiFi availability. We propose algorithms that map the 

changes in the Channel State Information (CSI) to the instantaneous breathing state. The key contribution 

is a model that relates relative phase of the received signal and the micro-motion of the chest during 

breathing. A novel processing pipeline is developed to extract a single breathing waveform from CSI data 

captured across noisy multiple sub-carriers in real-time. Our evaluation in a real-world setup shows that 

WiRelax can estimate real-time breath-by-breath cycle time with median error less than 0.25 s ( < 13% 

relative to the cycle length) thus enabling accurate device-free respiratory biofeedback. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Awareness of one’s breathing habits and conscious breathing

echniques leads to reduced stress and is considered fundamental

o achieving physical and mental well-being. Detailed respiratory

attern information is highly discriminatory of physiological stress

1] . Additionally, breathing exercises are frequently used in clinical

reatment of breathing related disorders such as Attention Deficit

yperactivity Disorder (ADHD), Chronic Obstructive Pulmonary 

isease (COPD) and Asthma [2–4] . 

Real-time access to fine-grained breathing data and the as-

essment of a subject’s breathing quality are crucial tools used

cross these applications. Monitoring of breathing is most com-

only achieved with dedicated wearables that users wear during

n exercise, including textile sensors, wearable belts, or sensors

ttached to the chest [5–7] . Several commercial products use wear-

ble technology to assess respiratory patterns. For example, Spire

8] monitors user stress based on breathing features such as rate, 
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epth, inhalation-to-exhalation ratio (IER), durations of inhalation

nd coaches the user towards calmer breathing to alleviate the

tress. Similarly, Prana [9] monitors depth, retention, smoothness,

xhalation time, and time between breaths [9] and allows users to

ick from a library of breathing exercises such as Yoga Pranayama,

ai Chi, and Buteyko for retraining their breathing patterns. In

ddition to dedicated wearables, increasing number of smartphone

pps target the space of meditation and breathing exercises. Smart-

atch manufacturers are already integrating mindfulness software

n their products. For example, Apple’s Breathe app [10] guides the

ser during breathing exercises by requiring him to breathe-in/out

ollowing a circle animation. However, this is done without actual

onitoring of the breathing progress. Such guidance is blind to

ubject behavior and lacks continuous feedback 

On the other hand, Device-free systems provide a more com-

ortable alternative, especially when monitoring is required over

ong-term. Majority of device-free systems use wireless radio sig-

als and relatively expensive hardware to monitor user breathing,

ncluding FMCW radar [12] , USRP [13] or Doppler radar [14] , which

imits their deployment potential . Off-the-shelf WiFi technology

rovides a viable cost-effective alternative [15–17] . However, exist-

ng WiFi-based systems primarily focus on breathing rate estima-

ion and cannot report detailed instantaneous respiratory pattern

https://doi.org/10.1016/j.adhoc.2020.102226
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Fig. 1. WiRelax leverages WiFi communication to provide subject with Instanta- 

neous respiratory feedback during meditation sessions (demo: [11] ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Cycle counting vs. instantaneous breath tracking: most CSI streams agree 

on breath cycles count (3 cycles in orange segment), but they lack consensus about 

instantaneous breath (i.e. whether the subject is inhaling or exhaling and at what 

depth in the red segment). WiRelax addresses instantaneous breath tracking. (For 

interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 
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information. Questions about the ongoing respiratory pattern, such

as, current cycle (inhalation/exhalation/retention), timing (e.g.

inhaling for 0.75 s), breathing depth (e.g. shallow/deep) can’t be

answered directly using existing approaches. These information

are equally important in biofeedback and well-being monitoring

applications and ubiquitous contact-free breathing biofeedback

solution is yet to be realized . 

In this paper we propose WiRelax , a device-free system for

real-time monitoring of detailed breathing patterns of a user,

which is a key enabler of breathing exercise and biofeedback sys-

tems. The system is based on analyzing channel state information

(CSI) of WiFi packets transmitted between two commodity WiFi

devices, such as a tablet and a smartphone (see Fig. 1 ). 

WiRelax needs to inform the subject about the instantaneous

breathing performance (duration and depth) within the breath-

ing session. Instantaneous reporting provides timely feedback and

enables the subject to apply breath control action. Consider the

scenario illustrated in Fig. 1 in which the subject is practicing 6-

second paced breathing (3 s inhalation & 3 s exhalation). The vi-

sual feedback consists of a color-coded circle that progresses in

the direction of the dashed arrow as the system senses user inhal-

ing (green color) and exhaling (red color). In state 2, for example,

the subject observes that he completed 50% of the exhalation cycle

and has 1.5 s more to go (gray segment). Ultimately, instantaneous

sensing and feedback allow him to synchronize his breathing with

the desired exercise settings. 

Several challenges arise in our use-case scenario. First, we re-

quire the breathing progress to be reported continuously during

the breathing cycle. Conventional peak-to-peak distance [16] and

frequency analysis [15,18] approaches that are used to estimate

breathing rate are unsuitable for this purpose as their estimates

are performed on completed cycles segments ( Fig. 2 ). We address

the challenge by introducing a model that correlates the instan-

taneous breathing-induced chest displacement of the user to the

change in CSI properties of the WiFi signal sub-carriers. According

to the model, the chest displacement will cause a linear shift in the
eceiver antennas phase difference. Additionally, the shift is pro-

ortional to the chest displacement magnitude, which enables us

o identify breathing depth (shallow vs deep breathing). Driven by

he model, a novel signal processing pipeline is developed to ad-

ress the practical considerations of filtering out noisy sub-carriers

nd fusing streams from many sub-carriers into a single breathing

aveform. 

Our second challenge is the requirement to distinguish inhala-

ion and exhalation cycles, as it has been shown that Inhala-

ion/Exhalation Ratio (IER) modulates heart rate variability [19] .

eporting IER and other similar metrics is contingent on the ability

o make such distinction. We solve this problem through a calibra-

ion procedure in which we ask the user to perform a pre-specified

reathing sequence at the beginning of the session. The calibration

akes few seconds and makes the system agnostic to environmen-

al changes and subject identities 

Ultimately, the estimated waveform accurately matches the

iming of the inhalation/exhalation cycles and the amplitude of the

hest displacement. Our results in Section 4 show that the timing

rrors are less than 0.5 s 83% of the time and the correlation be-

ween estimated breathing waveform and the ground truth is 77%.

Our contributions are summarized as follows: 

1. We propose the first WiFi-based contact-less real-time mon-

itoring system for ongoing breathing cycles. 

2. We model the relationship between breathing-related chest

displacement and the change in phase difference (PD) of

commodity WiFi packets. Unlike earlier models [15,20] that

focus on breathing frequency, the proposed model is de-

signed to infer instantaneous breathing dynamics (timing

and depth) making it suitable for biofeedback applications. 

3. We demonstrate the effectiveness of the system by captur-

ing detailed breathing pattern metrics in real-world trials.

Specifically, we capture inhalation time, exhalation time, and

relative amplitude, and inhalation-to-exhalation ratio (IER). 

The rest of the paper is organized as follows. Section 2 presents

n overview of the proposed WiRelax system which can accu-

ately capture the chest displacement profile of subjects. We then

resent an analytical model that captures how chest displacement

ffects the antenna phase difference in Section 3 . This section

lso describes the algorithm WiRelax uses to process the CSI data.

ection 4 evaluates the performance of WiRelax, Section 5 dis-

usses related work. Section 6 discusses limitations and future di-

ections and Section 7 concludes the paper. 
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Fig. 3. A sample breathing session. 
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Fig. 4. Recorded amplitude and phase difference for the breathing signal of Fig. 3 . 
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. Overview 

In this section, we motivate our work using an illustrative ex-

mple and provide a brief overview of WiRelax. Detailed descrip-

ion of the system will be presented in the next section. 

.1. Motivating example 

Our objective is to develop a system for real-time monitoring

f detailed breathing dynamics of a user. Our key insights are best

llustrated through an example. We conducted an experiment with

 single subject and two contact-less systems in a closed room. We

sed a UWB radar 1 to capture the ground truth data for the chest

ovement (plotted in Fig. 3 ). We also deployed two laptops, one

ransmitter and one receiver, to measure CSI data using an Intel

300 WiFi card. We processed the CSI data using the procedure in

16] , where for each sub-carrier, a Hampel filter was applied to re-

ove outliers and then a moving average filter was used to remove

he high frequency noise irrelevant to breathing. 

We plot the amplitude of the processed CSI data across sub-

arriers and phase difference of the CSI data between the two re-

eiver antennas in Fig. 4 . The top part of sub figures show the

ata for all sub-carriers, while the bottom sub-figures show the

ub-carrier with the highest variance 2 . The ground-truth breathing

aveform is shown in Fig. 3 . 

We observe that while the frequency of the oscillation of the

reathing waveform is preserved in both the amplitude and phase

f the CSI data, the amplitude of the breathing waveform (the

hest displacement in Fig. 3 ) does not correlate well with the CSI

mplitude. Phase difference, on the other hand, shows a high cor-

elation with the breathing waveform and is more suitable for

onitoring breathing patterns with a fine-grained detail. Based on

his observation our modelling is based on phase difference mea-

urements. Next, we give overview of how the system works then,

n Section 2 , we introduce the model and system implementation. 

.2. WiRelax overview 

WiRelax works by tracking a stationary user that is seated in a

oom equipped with two devices with commodity WiFi. At least

ne of the devices has multiple antennas, which is a common

ardware feature used to improve spatial diversity of WiFi com-

unications. 

Our system works in two steps. First, the user is asked to inhale

nd exhale normally for 10 s to calibrate the system. The calibra-

ion step generates a user model that links the RF signal to user’s

reathing. Next, the system provides the user with detailed infor-
1 Xethru X2-M200 radar ( https://novelda.com/ ) 
2 A sub-carrier’s variance is an indicator of its sensitivity [16] 

t  

s  

c  

d  
ation about his breathing patterns in real-time, through the con-

cious breathing graphical user interface (prototype in Fig. 13 ) 

Fig. 5 shows the key algorithmic steps. The system first cap-

ures CSI data for both receiver antennas and calculates phase dif-

erence (PD) between the two CSI streams, referred to as Raw PD .

he raw data is then preprocessed to remove noise present in all

ub-carriers. Next, the system rejects outlier sub-carriers and se-

ects one of the remaining sub-carriers as a “reference” in the Se-

ection and Alignment step. In this stage, sub-carriers that have the

pposite phase of the reference are inverted to be aligned. In the

aveform Estimation step, the data across all of the sub-carriers is

used into a single CSI waveform, using linear regression. Finally,

he user model from the calibration step is used to transform the

SI waveform to the breathing waveform. 

. WiRelax system 

In this section, we discuss the implementation of WiRelax. We

tart by modeling the relationship between chest displacement and

ntennas phase difference of the radio signals. We then present

ur pre-processing steps to de-noise the signals and a data fusion

lgorithm for combining data from multiple sub-carriers into a sin-

le breathing waveform. 

.1. The impact of chest displacement on sub-carrier phase difference 

This section gives the intuition on how displacement affects the

hase difference of the CSI. A more detailed mathematical analysis

ill be provided in Section 3.2 . 

WiRelax works with two receiver antennas, and we will use the

erm phase difference (PD) to refer to the phase difference mea-

ured between the two antennas, typically calculated using the re-

eived CSI data. The term should not be confused with path phase

ifference commonly found in the literature, which refers to the

https://novelda.com/
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Fig. 5. Illustration of WiRelax architecture. WiRelax is meant to be a framework that supports conscious breathing applications by providing real-time detailed breathing 

waveform. 

Fig. 6. The effect of object displacement on phase. 
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phase difference between two signals (typically direct path and a

reflection) as recorded by a single receiver antenna [20,21] . The lat-

ter cannot be measured from COTS WiFi but its impact on the re-

ceived CSI amplitude was modeled by earlier effort s and employed

in various applications [15,21] . 

We consider the situation in Fig. 6 (a) where a transmitter (TX),

a receiver (RX) and a slowly-moving reflector (depicted as a thick

horizontal line) are lying on a plane. We assume that the reflec-

tor moves in the direction perpendicular to the line connecting the

transmitter and receiver. We consider ray tracing and in particular

the ray from transmitter to receiver via the reflector. We see from

Fig. 6 (a) that the movement of the reflector causes the length of

this ray to extend. In particular, the thick green line shows the ex-

tra path traversed by the signal compared with an earlier time in-
tance. This extra path length �� causes an extra phase shift �φ
t the receiver [12] : 

φ = 2 π
�� 

λ
(1)

here λ denotes the wavelength. Since the extra path length ��

s related to displacement of the reflector, the extra phase shift

φ therefore contains information on the unknown displacement.

his method of estimating displacement from phase shift has been

mployed in [12,22] . However, this method requires the transmit-

er and the receiver synchronise their radio carriers, which is not

vailable for commodity WiFi. In this paper, we will overcome the

ack of carrier synchronisation in WiFi by using the phase differ-

nce between two antennas of the same receiver. 

Consider the situation in Fig. 6 (b), which is similar to that of

ig. 6 (a), except that the receiver has two antennas. We again con-

ider ray tracing. There is a reflected ray from the transmitter to

ach of the two antennas, shown as thin blue and orange lines. The

range ray travels over a longer path length and the path length

ifference between the two rays are shown as thick red line (lower

art of the figure) and thick green line (upper part of the figure).

he extra path causes a phase difference between the received sig-

als at the two receiver antennas and we use it to estimate the

isplacement of the reflector. 

Note that the phase difference is computed with respect to a

ommon transmitter antenna which acts as a reference. Therefore,

he lack of synchronisation between the transmitter and receiver

s not a concern. Also, we assume that the unknown displacement

hat we want to measure is small enough so that the extra path

ength is less than one wavelength. This allows our system to be

gnostic to the phase wrap-around problem, where many different

xtra path lengths correspond to the same phase difference (e.g.

 phase difference of π
2 can be due to extra path lengths of λ

4 ,

+ 

λ
4 , 2 λ + 

λ
4 etc). In our scenario, the expected movement of the

hest is in the range of 4–12 mm and the wavelength of the 5GHz

ignals is 5.7 cm [15] . 

.2. Modeling the impact of displacement on phase difference 

The aim of this section is to derive a mathematical expression

elating the phase difference between two receiver antennas as a

unction of the displacement of the chest as a reflector. We con-

ider the situation depicted in Fig. 7 , which has the same setup

s that in Fig. 6 (b) but with relevant distance labeled to facilitate

he mathematical analysis. Table 1 summarises the symbols used

n the mathematical analysis. 
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Table 1 

Symbols used in the mathematical derivation. 

Symbol Description 

d Distance between TX and RX in the x -direction 

k Distance between the two receiving antennas 

h t Nominal distance between the transmitting and the reflector in the y -direction 

h r Distance between the receiving antenna 1 and the reflector in the y -direction 

ε Displacement of the reflector in the y -direction from the nominal distance 

Fig. 7. Illustrative example annotated with key symbols used in the model deriva- 

tion. 

 

e  

(

f

�

T  

m  

i  

�

 

t  

r

�

 

c

�

W

i  

E  

t

�

w

S

 

λ  

p  

E

 

I  

d  

i  

t  

m  

p  

u  

t  

d

3

 

o

 

f  

i  

o  

t  

s  

t  

W

3

 

n  

o  

t  

a  

n  

t  

i  

s  

t  

j  

c  

f  

t

 

 

 

 

 

 

 

 

 

f  

1

3

 

f  

d  

t  
Our model is based on ray tracing. We consider two rays for

ach antenna: (1) LoS propagation from the transmitting antenna;

2) Reflected ray by the chest. The difference in path length �p LOS 

or the two LoS rays reaching the two antennas is: 

p LOS = 

√ 

((h t − h r ) 2 + d 2 

−
√ 

((h t − (h r + k )) 2 + d 2 (2) 

his path length difference is independent of the chest displace-

ent. Without loss of generality, we assume h t = h r = h . Since the

nter-antenna distance k is small compared to d , we assume that

p LOS is negligible. 

When the chest is at a distance of ε from its nominal posi-

ion, the difference in path lengths �p ( ε) for the two reflected rays

eaching the two antennas is a function of ε, as follows: 

p(ε) = 

√ 

(h t + h r + 2 ε) 2 + d 2 

−
√ 

((h t + (h r + k ) + 2 ε) 2 + d 2 (3) 

This results in a phase difference �φ( ε) between the two re-

eiving antennas: 

φ(ε) = 

2 π

λ
�p(ε) (4) 

e again assume that h t = h r = h . Since the chest displacement ε
s small compared with h , we approximate the right-hand side of

q. (3) using the Taylor’s series expansion in ε that retains only up

o linear term. With this approximation, we have: 

φ(ε) − �φ(0) = 

2 π

λ
εS (5) 

here 

 = 

∂�p(ε) 

∂ε

∣∣∣∣
ε=0 

= 

4 h √ 

(2 h ) 2 + d 2 
− 4 h + 2 k √ 

(2 h + k ) 2 + d 2 
(6) 

We assume that WiFi has C sub-carriers with wavelengths

i where i = 1 , . . . , C and for the i th sub-carrier, the measured

hase difference between receiver antennas is �φi ( ε). By using

q. (5) for all C sub-carriers, we have: 

�φi (ε) − �φi (0) 

2 π
= 

1 

λi 

εS for i = 1 , . . . , C. (7)

f we perform a linear regression with 

�φi (ε) −�φi (0) 
2 π as the depen-

ent variable and 

1 
λ

’s as the regressors, then the estimated slope

i 
s εS . We see from Eq. (6) that the constant S depends on the dis-

ances between the transmitter, receiver and the user. Although it

ay be possible to obtain the value of S through some calibration

rocess, this process can be cumbersome. In this paper, we will

se the estimated slope to determine the chest displacement up

o a proportional constant and we will refer to that as the relative

isplacement. 

.3. Relative displacement estimation 

Our proposed system uses the phase difference between a pair

f receiver antennas as the input. 

In the beginning, our system acquires and processes phase dif-

erence signal for a calibration period of 10 s in which the user

s asked to breath normally. A model of the amplitude and phase

f user’s breathing is kept as a result of this step. Next, the sys-

em follows a series of processing steps to remove noise in the CSI

amples, reject outlier sub-carrier data, and to fuse data from mul-

iple sub-carriers. Overview of the steps was presented in Fig. 5 .

e next describe the individual processing steps in a more detail. 

.3.1. Calibration 

In the calibration step, the system instructs the user to breathe

ormally for 10 s and then gives an audio cue to indicate the start

f the calibration step. During calibration, the subject is expected

o hold the breath for about a second, then repeatedly breath in

nd breath out in relaxed manner until the end of calibration, sig-

aled with another audio cue. After that, the subject will follow

he breathing exercises. The system records CSI data during cal-

bration, which is subsequently used to resolve ambiguity in the

ign of ± 180 o phase shift, which in turn causes ambiguity in dis-

inguishing between inhalation and exhalation. By asking the sub-

ect to inhale first before exhaling in the calibration process, we

an capture the sign corresponding to inhalation and exhalation

or them to be correctly identified later. In summary, the calibra-

ion data is used to model: 

• Amplitude of the normal breathing : The median of the esti-

mated breathing amplitude during calibration is kept as the ref-

erence amplitude. The information is used for tracking breath-

ing depth. 

• Direction of the phase difference in Inhalation and Exhala-

tion cycles : Identifying inhalation vs exhalation is achieved by

relating the change in the produced waveform to the actual ex-

pected breathing pattern during calibration. The information is

vital for capturing inhalation/exhalation ratio among other met-

rics. 

It should be noted that the calibration stage (10 s) is per-

ormed once in the beginning of each breathing session (lasting

0–15 min). 

.3.2. Denoising and outlier removal 

The aim of the preprocessing step is to de-noise the signal be-

ore handing it over to the filtering module. The preprocessing is

one for each individual sub-carrier independently. First, we use

he Hampel filter to remove outlier samples that render themselves
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Fig. 8. Preprocessing . Preprocessing depicted for a 1-minute segment of breathing session (rate 40 bpm ). Time is on x-axis. Lower row show preprocessing sequence applied 

to a single sub-carrier (#9) while upper one depict the preprocessing impact on all sub-carriers (sub-carriers numbers on y-axis). Values in upper sub-figures scaled to range 

[0–1] for each sub-carrier for visualization purposes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Sub-carriers Correlation : shows the correlation between all sub-carriers 

and the ground truth (GT) for a subject breathing normally. Matrix rows are ordered 

by their variance, the highest value on the top. Sub-carriers with higher variance 

show a better correlation with GT in general. 

 

 

 

 

 

 

 

 

 

 

 

 

as abrupt changes. In particular, we discard any point falling out-

side the range of [ μ − τ ∗ σ, μ + τ ∗ σ ] , where μ, σ and τ are the

median, mean absolute deviation and the threshold, respectively.

The window size is set to 1 s. Next, to filter-out irrelevant high fre-

quency noise, the sub-carriers streams are subjected to a moving

average filter. We use a moving average filter with a larger window

size (defaulted to 3.5 s) to extract the sub-carrier dynamic trend.

We then subtract the obtained trend from the original data stream

to get the de-trended data ( Fig. 8 (e)). 

We observed during our experimentation that occasionally a

few (typically fewer than 3) noisy sub-carriers are present in the

data. These noisy sub-carriers vary in a random way throughout

the whole breathing session and do not reflect the actual breath-

ing. Excluding these sub-carriers altogether as early as possible en-

sures reliability of subsequent operations. To identify them, we use

the following heuristic. 

abs (V ar i (P D )) = 

{
> τ, outlier 
≤ τ, otherwise 

(8)

where Var i ( PD ) denotes the variance of the phase difference for the

sub-carrier i ; The default value for τ is 0.8 π . 

In the final step of the preprocessing, the Savitzky-Golay poly-

nomial least squares filter (SG Filter) is employed. It serves

the purpose of smoothing the signal while preserving the steep

changes [23] and is useful for preserving the position of the peaks

and valleys. Fig. 8 (f) shows an example of pre-processed single

sub-carrier. 

3.3.3. Selecting sub-carriers 

While previous work exists on selecting the informative sub-

carriers [15,16] , we base our sub-carrier selection algorithm on an

observation that sub-carriers with high variance are more repre-

sentative of the actual breathing pattern. Fig. 9 shows the correla-

tion matrix of all 30 sub-carriers (each scaled to [0–1]) sorted by

their variance. We include the reference signal (“GT”) in the cal-

culation. We observe: 1) high variance of sub-carrier signals corre-

lates strongly with GT, 2) top sub-carriers correlate well with each

other. Based on these observations, we select sub-carrier that has

the highest variance and passes certain criteria and then select all

other sub-carriers that correlate well with it. These selected sub-

carriers will be fused later by the waveform estimation module.

The detailed selection procedure is as follows: 
• We sort sub-carriers in descending order based on their vari-

ance. 

• For the top 20 sub-carriers, we calculate the correlation score as

the average correlation between it and every other sub-carrier

in this list. 

• We pick the sub-carrier with highest correlation score as the ref-

erence if its number of peaks is close to the median number of

peaks for all top sub-carriers (less than one standard deviation).

Otherwise, it will be discarded and the next candidate will be

considered. The rationale is based on the observation that sub-

carrier’s high variance does not necessarily reflect its sensitivity

level. A noisy sub-carrier with high variance will have a much

higher number of peaks than the majority of other sub-carriers

due to random fluctuations. 

• The process is continued until a suitable reference sub-carrier

is found. 
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Fig. 10. Breathing Waveform Estimation as explained by Eq. (7) by regressing over successive PD samples (c-g samples in (a)). Based on this the estimated waveform aligns 

well with ground truth (b). 
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3 Currently, commodity smartphones’ wireless cards can export CSI data us- 

ing tools as Nexmon Channel State Information Extractor ( https://github.com/ 

seemoo-lab/nexmon _ csi ) 
• From all sub-carriers, we add the sub-carriers that are strongly

correlated with the reference one (absolute correlation ≥ 0.65)

to the list. 

.3.4. Alignment 

Some sub-carriers in the selected subset will have an oppo-

ite phase to the reference sub-carrier. We align all sub-carriers

ith the reference one by inverting sub-carriers that have negative

ross-correlation with the reference signal. 

.3.5. Estimating breathing waveform 

The input to this step is a number of PD streams (or time se-

ies) where each stream corresponds to a selected de-noised and

ligned sub-carrier. The black curves in Fig. 10 show an example.

n this step, we ‘average’ these data streams to compute the rela-

ive displacement via linear estimation. 

Linear Estimation. The rationale behind linear estimation is re-

ated to our earlier observation that the phase difference and chest

isplacement are linearly related. The idea is that, at each time

nstance, we perform a linear regression with the PD of the sub-

arriers as the dependent variables and the inverse wavelength of

he sub-carriers 1 
λi 

as the regressors. To illustrate this idea, we se-

ected five time instances which are indicated by the red dotted

ines in Fig. 10 (1). At each time instance, we plot the PD of the se-

ected sub-carrier against the sub-carrier index in sub-figures (c)–

g) in Fig. 10 . These sub-figures also show the fitted line in red

olor. We can see from these figures that the trend is almost linear

ut the noise level is fairly high. By repeating this process for all

ime instances, we arrive at the estimated relative displacement.

ig. 10 (b) compares the estimated relative displacement (calibra-

ion information utilized) and the ground truth. To counter the

rror that might result from fusing noisy sub-carriers, the regres-

ion residual error is continually monitored for every selected sub-

arrier and the overall median as well. When the residual error

f specific sub-carrier is higher than the median by more than 1.5

tandard deviation, it will be excluded and the regression-based

stimation will be repeated to produce a refined estimation. 

Fig. 11 (a) shows example estimated waveform during normal

reathing session and the corresponding reference waveform. In

his example, WiRelax achieves timing error of 0.21 s (12.2% rel-
tive timing error). The inhalation to exhalation ratio (I/E ratio)

s another metric commonly used in paced breathing exercises

nd WiRelax estimates it with an error of 14.4%. Visually, we can

bserve the similarity between the estimated and the reference

aveforms across the five-minute segment and this is confirmed

y the high correlation (0.88) and low RMSE (0.12) of the recon-

tructed wave-form and the reference signal. Fig. 12 shows corre-

ation between the estimated and the reference waveforms for var-

ous respiratory pattern examples. 

. Evaluation 

.1. Goals, metrics and methodology 

We show that WiRelax provides real-time full-cycle respiration

eedback during meditation practice. For this purpose, we con-

ider a meditation space, also called “Quiet Room”. Similar rooms

re available to employees in work environments [24] . The subject

ould place her portable WiFi enabled devices in front of her, pick

 specific exercise (or manually setting inhalation/exhalation time),

nd start practicing. Feedback is provided during the session. We

mploy a pair of laptops as the communicating devices 3 . Typically,

he user would need the devices close enough to be able to ob-

erve the real-time feedback. Nevertheless, in our experiments, we

ary the distances in the range 1–3 m to evaluate the performance

f WiRelax for different room sizes. 

Feedback: Although we leave the feature-rich interactive user

nterface design as a future work, we designed an initial proto-

ype for providing in-session feedback ( Fig. 13 ). After experiment-

ng with a few designs, we find the circular segmented (radial

onut) user interface component is generally preferred by the sub-

ects (top left in Fig. 13 ). We process incoming packets every 0.1 s

o simulate real-time input. WiRelax processing was implemented

n MacBook Pro-running macOS Sierra v 10.12.6 with 8 GB RAM

nd 2.7 GHz Intel Core i5 processor. Implementation was done in

ython 3. NumPy and scikit-learn libraries were utilized for pro-

https://github.com/seemoo-lab/nexmon_csi
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Fig. 11. Breath cycles tracking for a segment of normal breathing session. (a) estimated relative displacement waveform compared to reference displacement waveform. 

Peaks and valleys positions are visualized on top and bottom, respectively, slanting lines signify the deviation direction [as shown in the closeup (b)]. (c) breath tracking 

accuracy for various metrics. The red lines denote the medians: 0.21 s, 12.2% and 14.4% for cycle timing error, relative timing error and I/E ratio error respectively. The 

correlation and root mean squared error between the estimated waveform and reference signal are also reported. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 

Fig. 12. (a), (c) and (e) estimated waveforms for deep breathing, deep & normal 

breathing and quick breathing sessions, respectively. (b), (d) and (f) show scatter 

plots of estimated relative displacement against the true displacement. 

 

 

 

 

Fig. 13. WiRelax biofeedback prototype (demo: https://youtu.be/e _ er2w39b4I ). 
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i  
cessing data and rendering the output. With these configurations,

it takes WiRelax 180 ms on average to process one second of input

data and produce the estimated waveform. 

Data Collection We collected data from several “quiet rooms”

to evaluate WiRelax. The WiFi transmitter and receiver are HP

elitebook 6930p Laptops equipped with Intel 5300 WiFi cards.
hese laptops are placed on a desk and collect the WiFi CSI data

sing Linux 802.11n CSI Tool [25] . The ground truth for chest dis-

lacement was collected by an X2-M200 UWB-IR sensor [26] . This

ensor has been employed in a variety of vital sign monitoring

pplications [26] and reportedly has a maximum deviation of 5%

ompared to PSG reference airflow and thorax/abdomen displace-

ent measurements [27] . The sensor reports chest displacement

n millimeters at 20Hz sampling rate. Ten volunteers (8 males and

https://youtu.be/e_er2w39b4I
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Fig. 14. Evaluation of different breathing accuracy metrics with respect to distance between the user and WiRelax system. 
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 females) participated in the data collection process over a to-

al period of 4 months. 4 For each user, we run several experi-

ents to evaluate the impact of the distance between the user and

he sensor on WiRelax algorithm performance. We select the key

ignal processing parameters using leave-one-out cross validation

LOOCV) in which data from single user is used for testing the pa-

ameters that were determined using data from all other users. 

Metrics: We use the same quantitative metrics as previous

ork, including the real-time cycle timing error and relative tim-

ng error (also called progress time error) metrics used by Hao

t al. [7] , and the normalized amplitude Root Mean Squared Er-

or (RMSE) and correlation between normalized waveforms used

y Lee et al. [28] . 

.2. Capturing breathing cycles 

In this section we evaluate the performance of WiRelax in

erms of the accuracy of breathing cycle time and amplitude es-

imation. We also study the impact of the distance parameter h

efined in Section 3.2 . Fig. 14 shows the accuracy of the proposed

ystem for various timing and amplitude related metrics across the

hree distances considered. 

Fig. 14 (c) plots the breathing rate error. The system estimates

he rate accurately, with a median error of 0.15 bpm for a distance

f 1 m, which slightly increases to 0.2 bpm for larger distances.
4 Data collection approved by Human Research Ethics committee in University of 

ew South Wales. 

4

 

s  
nhalation and exhalation cycles are also captured accurately (see

ig. 14 (a)) with median errors of 0.24 s, 0.23 s and 0.32 s for 1 m,

 m and 3 m, respectively. We note that an error in the cycle time

stimation has a direct impact on the next cycle. For example, a

mall positive error in the inhalation cycle of +0.1 s will introduce

n error of −0.1 s in the following exhalation cycle. 

The relative timing error is a more descriptive measurement of

he timing accuracy because the cycle length is taken into account

ere. WiRelax achieves the median relative timing error of 12.9% at

 1 m distance. Intuitively, the timing errors observed in WiRelax

re related to the number and the quality of representative sub-

arrier signals measured by the Wi-Fi hardware. Signal-to-noise ra-

io of these signals decreases with increasing distance between the

est subject and the measurement apparatus, which translates into

ower accuracy. 

Amplitude-related metrics are shown in Fig. 14 (d), (e). Similar

o the timing metrics, amplitude estimation performance degrades

ith an increasing distance, albeit at a higher rate. There are two

easons for this. First, timing-based metrics are only impacted by

he cycle start/end positions while amplitude is impacted by the

hole PD time-series that dictate the waveform shape. Second,

isalignment caused by the timing errors further amplifies the

mplitude errors. 

.3. Capturing complete breathing pattern 

While WiRelax is concerned mainly with providing accurate in-

ession feedback to the user, it is informative to put WiRelax in
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Fig. 15. This plot shows the results of breathing cycle estimations from three al- 

gorithms: Liu et al. [16] , PhaseBeat and WiRelax. The gray line shows the ground 

truth for chest displacement. The solid gray (red) circles show the true (estimated) 

peak. The ticks show the time difference between the estimated and true peak (i.e. 

the difference in timings of the red and gray circles). (a) Liu et al. [16] estimates cy- 

cle period using all peaks (small red circles) of selected sub-carriers. The weighted 

average of all sub-carriers cycle time determines the final breathing cycle bound- 

aries (marked by large red circles). (b) PhaseBeat [18] employs inter-peak duration 

for a chosen single sub-carrier to estimate the breathing rate. (c) WiRelax employs 

a cohort of selected sub-carriers to estimate the final breathing waveform. (For in- 

terpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 16. TensorBeat [29] processing for same data of Fig. 15 . 
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context with state-of-the-art WiFi-based breathing monitoring sys-

tems. We focus on amplitude-based system [16] and two phase

difference-based systems [18] and [29] . For objective comparison

we consider only the breathing rate for [29] and the complete cy-

cle length metric for [16] , while the complete waveform (timing

and waveform amplitude) is compared to PhaseBeat [18] . 

We present brief description of these systems along with repli-

cation considerations for convenience: 

• Liu et al. [16] : amplitude measurements from 30 sub-carriers

are used. Data calibration is applied to mitigate the noise in

raw data. Then, the most sensitive sub-carriers (blue curve area

in Fig. 15 (a)) are selected based on their variance. Next, peaks

locations are calculated while considering fake peak removal in

the process. Finally, weighted average of all peak-to-peak inter-

vals across selected sub-carriers is employed to get the breath-

ing rate. 

• PhaseBeat [18] :Phase difference data from 30 sub-carriers at

400 Hz sampling rate are used as input. DC component and

high frequency noises are removed through calibration. Next,

the top 3 sub-carriers with maximum mean absolute deviations

are picked. Out of them, the median one is the final selection. 

• TensorBeat [29] : 

Phase difference data from 60 sub-carriers (two antenna pairs)

at 20 Hz sampling rate are used as input. After calibration, a

two-dimensional Hankel matrix is constructed from 600 con-

secutive packets of each sub-carriers. The 60 Hankel matrices

are stacked into the 3-dimensional tensor. Since we have a sin-

gle user, the tensor’s rank was fixed to 2. Next, tensor decom-
position is applied using CP decomposition [30] and autocor-

relation is calculated on the fusion of the decomposed signal

pairs. Finally, the rate is reported based on average inter-peak

duration. 

We show the performance of different algorithms based on an

xperiment with one subject. Over a period of 30 s, the subject

as asked to perform deep breathing for 10 s, then normal breath-

ng for 10 s and finally deep breathing for 10 s. The purpose is to

reate a breathing pattern whose amplitude varies over time. The

rue breathing pattern captured by the UWB sensor is plotted in

ray line in Fig. 15 (a)–(c). 

The WiFi CSI data was processed by the algorithm of Liu et al.,

s well as PhaseBeat, WiRelax and TensorBeat. The results from the

hree algorithms are shown in Fig. 15 (a)–(c) while those for Ten-

orBeat are in Fig. 16 . 

We first consider Fig. 15 (a)–(c). In these figures, the solid gray

nd red circles show the timing of the true and estimated peaks,

espectively. The gray ticks near the top of each subplot show the

eviation between the timing of the true and estimated peaks.

herefore, a wider tick indicates a larger timing error and vice

ersa. 

For waveform estimation, it can readily be seen that WiRelax

as the least timing error, 0.21 s compared to 0.41 s and 0.266 s

or Liu et al. [16] and PhaseBeat. In addition, WiRelax is able to get

he relative chest displacement amplitude much more accurately

ompared to PhaseBeat (WiRelax Normalized RMSE is 0.1081 com-

ared to 0.2716 by PhaseBeat). TensorBeat estimates the breath-

ng rate from the median peak-to-peak distances (see Fig. 16 (c)).

he fused breathing signal 16 (b) doesn’t match the actual breath-

ng pattern. While a noticeable decrease in breathing depth can

e seen in Fig. 16 (b), the state transition (deep to shallow to deep

gain) is missing. 

. Related work 

The work presented here is related to the relatively large body

f literature about respiration tracking. In this section we survey

everal categories of research and the related consumer products

vailable in the market. 
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In a clinical setting, Respiratory Inductance Plethysmography

RIP) [31,32] is commonly used as the “gold standard” for monitor-

ng respiration. Although it is accurate, the cost and inconvenience

f RIP motivates researchers to investigate alternative techniques,

specially for applications that require daily monitoring. The tech-

iques generally break down to two categories: wearable device

nd device-free monitoring. 

.1. Wearable device monitoring 

A large body of previous research used attachable sensors

o monitor breathing. Examples include, textile-based systems

5,6] that imitate RIP by using conductive materials that track 

he expansion and contraction of chest during respiration. Zephyr

33] used built-in accelerometer and gyroscope sensors in a phone

laced on the user’s chest to estimate respiratory rate. Recently,

indfulWatch [7] proposed the use of smartwatch’s inertial sen-

ors to track breathing cycles in real-time for meditation applica-

ions. 

Stress detection and management based on breathing monitor-

ng is also a commercially active area. For example, Spire [8] uses a

atented respiration sensor [34] to collect respiration characteris-

ics and recommends meditation sessions and breathing exercises

o manage the stress. Prana [9] monitors breathing patterns us-

ng wearable pod or belt and offers interactive games (controlled

hrough breathing) for guiding the users during breathing exer-

ises. 

.2. Device-free monitoring 

Closely related to our approach, device free systems can mon-

tor vital signals of a user without requiring the user to wear a

ensor. Among them, RF based sensing systems belong to the most

opular device-free systems. 

Respiration Rate Sensing: UbiBreathe [17] employs WiFi ra-

io signal strength (RSS) to monitor breathing rates. mmVital

ses RSS of a 60 GHz millimeter wave signal for breathing and

eart rates monitoring. Liu et al. [16] and PhaseBeat [18] lever-

ged WiFi channel state information (CSI) to monitor breathing

ate and, also, heart rate after utilizing directional antennas. Later,

ardioFi [35] leveraged enhanced sub-carrier selection mechanism

or better heart rate monitoring without requiring special anten-

as. A number of amplitude-based respiration sensing systems

15,20] based on the Fresnel Zone Model were developed. The 

odel relates one’s chest movement to the received WiFi sig-

als amplitude measurements. As chest displacement crosses Fres-

el zones, the receiving signal shows a continuous sinusoidal-like

ave, with peaks and valleys generated by crossing the bound-

ries. This allows for breathing pattern extraction. Our model, on

he other hand, is based on the phase difference measurements

nd goes beyond pattern capturing to explain how breathing depth

an impact captured PD measurements. 

Respiration Detection Range: Recently, there are a few works

ocused on improving the detection range of WiFi breathing. Full-

reath [36] uses phase and amplitude measurements simultane-

usly and employs conjugate multiplication of two antenna mea-

urements to improve breathing detectability. FarSense [37] pro-

osed to use “CSI ratio” to push the respiration sensing range to

ouse level (up to 8–9 m). 

The main distinction between our work and related device-

ree WiFi breathing monitoring systems is the focus on extracting

reathing biofeedback information. For this, our system is designed

o address the requirements of reporting instantaneous breathing

epth and timing while the breathing cycle is still ongoing. The
bility of the proposed model to regress directly on incoming PD

easurements enables such tracking without having to wait for

he cycle completion. This, in turn, enables WiFi-based interactive

reathing applications. 

. Limitations and future work 

Advances in device-free sensing using COTS WiFi have recently

parked a renewed interest in their applications for fine-grained

ensing applications including vital sign monitoring. In this work

e focused on reliable and detailed monitoring of the breath cycle

nd its characteristics. Our findings suggest that COTS WiFi can be

ffectively em ployed for conscious breathing monitoring and real-

ime feedback. 

However, WiRelax has its limitations. First, the CSI data is sensi-

ive to multi-path interference specific to the environmental setup.

e acknowledge that WiRelax performance might be impacted by

he movement of people nearby. The environmental impact limi-

ation is fundamental to WiFi and other device-free sensing sys-

ems and presents an important challenge for future research [38] .

urrently, we are exploring ways to mitigate the impact of irrele-

ant motions, for example, by developing a “Breath Model” [7] for

he users. Breathing patterns do not change dramatically between

onsecutive cycles, which allows us to suppress the noise in the

reathing cycle estimation by fusing information from a previous

noise-free) reference cycle. 

Second, we adopted preliminary visual feedback scheme in the

iRelax prototype, to demonstrate the real-time breath-by-breath

onitoring capability. The subject can observe his instantaneous

ehavior and adapt accordingly. However, a further user-centric

tudy might be needed to improve its responsiveness and make it

ore intuitive. For example, studies show that auditory feedback

s superior to visual feedback in creating self-reported calm [39] .

nother important feedback that our system can provide is a sum-

arized per-session breathing performance, which is vital for long-

erm tracking of breathing habits. Our future work will investigate

isual, auditory, and summary features to further improve WiRelax

apabilities. 

. Conclusions 

To enable interactive breath control applications, this paper pro-

osed contact-less sensing of instantaneous breathing dynamics

sing WiFi channel (CSI). Tracking on-going breath cycles using

iFi was never explored in past research as per authors’ best

nowledge. Contrary to complete cycles tracking (breathing rate),

n-going cycle progress reporting is complicated by the need to

ap divergent measurements from noisy sub-carriers into a sin-

le instantaneous breathing state (time and depth) while main-

aining sub-second responsiveness (i.e. instant sensing and feed-

ack loop) necessary for biofeedback. We approached the prob-

em guided by observations about the stability of phase differ-

nce (PD). Our study of the impact of micro-motions on the PD

easurements culminated into a model showing the linear rela-

ion between the two quantities. Interestingly, this enables map-

ing the instantly measured PD into chest displacement (up to rel-

tive constant). Consequently, inferring breathing progress without

aiting cycle completion is theoretically feasible. To get reliable es-

imation in practice, a novel sub-carrier filtering and selection was

dopted and robustness was further enforced by leveraging simple

er-session calibration procedure. WiRelax is able to report sub-

econd breathing progress in real-time with median timing error of

.25 s. The system requires neither training nor information about

ubject identity and ready to deploy on off-the-shelf WiFi devices.
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This opens the door to employing WiFi sensing in biofeedback ap-

plications on large scale. 
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